Skip to main content

Semiochemical-Baited Autodissemination Device for Managing BFT on Cowpea

  • Chapter
  • First Online:
Sustainable Management of Invasive Pests in Africa

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 14))

  • 298 Accesses

Abstract

Various autodissemination devices, baited with Lurem-TR and methyl anthranilate, were compared for their effective control of Bean flower thrips (BFT) on cowpea crops. The BFT density in treatment plots with semiochemical-baited autodissemination devices was significantly different during the two evaluation seasons (P < 0.001). In the first season, plots treated with the fungus-free device recorded the lowest BFT density (12.1 ± 1.0 thrips), while those treated with the autodissemination baited with Lurem-TR recorded the highest BFT density (19.1 ± 1.5 thrips), which was significantly different from plots treated with the device baited with methyl anthranilate (16.4 ± 1.3 thrips). The same scenario was observed in the second season, corresponding to high infestation season, where the autodissemination devices baited with Lurem-TR and methyl anthranilate and the fungus-free device recorded 59.9 ± 3.5, 48.4 ± 3.5 and 27.6 ± 4.3 thrips, respectively. In all autoinoculation devices, at least 45% of M. anisopliae conidia remained viable 12–15 days post-exposure. No significant difference in M. anisopliae conidial persistence and acquisition was found between the two contamination devices baited with both semiochemicals. This study has demonstrated that methyl anthranilate could be used in autodissemination, as well as Lurem-TR, to control BFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate, T., & Ampofo, J. K. (1996). Insect pests of beans in Africa: Their ecology and management. Annual Review of Entomology, 41, 45–73.

    Article  CAS  Google Scholar 

  • Adipala, E., Omongo, C. A., Sabiti, A., Obuo, J. E., Edema, R., Bua, B., et al. (1999). Pests and diseases on cowpea in Uganda: Experiences from a diagnostic survey. African Crop Science Journal, 7, 465–478.

    Article  Google Scholar 

  • Belmain, S. R., Haggar, J., Holt, J., & Stevenson, P. C. (2013). Managing legume pests in sub-Saharan Africa. Challenges and prospects for improving food security and nutrition through agro-ecological intensification. Natural Resources Institute, University of Greenwich, UK, 34.

    Google Scholar 

  • Daoust, R. A., & Pereira, R. M. (1986). Stability of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae on beetle-attracting tubers and cowpea foliage in Brazil. Environmental Entomology, 15, 1237–1243.

    Article  Google Scholar 

  • Davidson, M. M., Butler, R. C., Winkler, S., & Teulon, D. A. J. (2007). Pyridine compounds increase trap capture of Frankliniella occidentalis (Pergande) in a covered crop. New Zealand Plant Protection, 60, 56–60.

    Article  CAS  Google Scholar 

  • Dimbi, S., Maniania, N. K., Lux, S. A., Ekesi, S., & Mueke, J. M. (2003). Pathogenicity of Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Balsamo) Vuillemin to three adult fruit fly species: Ceratitis capitata (Weidemann), C. rosa var. fasciventris Karsch and C. cosyra (Walker) (Diptera: Tephritidae). Mycopathologia, 156, 375–382.

    Article  Google Scholar 

  • Ekesi, S., & Maniania, N. K. (2007). Use of entomopathogenic fungi in biological pest management. Kerala: Research Signpost.

    Google Scholar 

  • Ekesi, S., Maniania, N. K., Ampong-Nyarko, K., & Akpa, A. D. (2001). Importance of timing of application of the entomopathogenic fungus, Metarhizium anisopliae for the control of legume flower thrips, Megalurothrips sjostedti and its persistence in cowpea. Archives of Phytopathology and Plant Protection, 33, 431–445.

    Article  Google Scholar 

  • El-Sayed, A. M., Mitchell, V. J., McLaren, G. F., Manning, L. M., Bunn, B., & Suckling, D. M. (2009). Attraction of New Zealand flower thrips, Thrips obscuratus, to cis-jasmone, a volatile identified from Japanese honey suckle flowers. Journal of Chemical Ecology, 35, 656–663.

    Article  CAS  Google Scholar 

  • Fritsche, M. E., & Tamo, M. (2000). Influence of thrips species on the life history and behaviour of Orius albidipennis. Entomologia Experimentalis et Applicata, 96, 111–118.

    Article  Google Scholar 

  • Gachu, S. M., Muthomi, J. W., Narla, R. D., Nderitu, J. H., Olubayo, F. M., & Wagacha, J. M. (2012). Management of thrips (Thrips tabaci) in bulb onion by use of vegetable intercrops. International Journal of AgriScience, 2, 393–402.

    Google Scholar 

  • Goettel, M. S., & Inglis, G. D. (1997). Fungi: Hyphomycetes. In L. Lacey (Ed.), Manual techniques in insect pathology (pp. 213–214). San Diego/London: Academic.

    Chapter  Google Scholar 

  • Imai, T., Maekawa, M., & Murai, T. (2001). Attractiveness of methyl anthranilate and its related compounds to the flower thrips, Thrips hawaiiensis (Morgan), T. coloratus Schmutz, T. flavus Schrank and Megalurothrips distalis (Karny) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 36, 475–478.

    Article  CAS  Google Scholar 

  • Jackai, L. E. N., & Daoust, R. A. (1986). Insect pests of cowpeas. Annual Review of Entomology, 31, 95–119.

    Article  Google Scholar 

  • Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159–185.

    Article  Google Scholar 

  • Jenkins, N. E., Goettel, M. S. (1997). Methods for mass production of microbial control agents of grasshoppers and locusts. In M. S. Goettel & D. L. Johnson (Eds.), Microbial control of grasshoppers and locusts The memoirs of the Entomology Society of Canada, pp. 37–48.

    Google Scholar 

  • Jensen, S. E. (2004). Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5, 131–146.

    Article  Google Scholar 

  • Kiprotich, M. J., Mamati, E., & Bikketi, E. (2015). Effect of climate change on cowpea production in Mwania watershed: A case of Machakos County. International Journal of Educational Research, 3, 287–298.

    Google Scholar 

  • Loomans A. J. M., & van Lenteren J.C. (1995). Biological control of thrips pests: A review on thrips parasitoids. Wageningen Agricultural University Papers, 95, 92–201.

    Google Scholar 

  • Maniania, N. K. (2002). A low-cost contamination device for infecting adult tsetse flies, Glossina spp., with the entomopathogenic fungus Metarhizium anisopliae in the field. Biocontrol Science and Technology, 12, 59–66.

    Article  Google Scholar 

  • Mergeai, G., Kimani, P., Mwang’ombe, A., Olubayo, F., Smith, C., Audi, P., & Le Roi, A. (2001). Survey of pigeonpea production systems, utilization and marketing in semi-arid lands of Kenya. Biotechnologie, Agronomie, Société et Environnement, 5, 145–153.

    Google Scholar 

  • Mfuti, D. K., Subramanian, S., van Tol, R. W. H. M., Wiegers, G. L., De Kogel, W. J., Niassy, S., et al. (2016a). Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Management Science, 72, 131–139.

    Article  CAS  Google Scholar 

  • Mfuti, D. K., Subramanian, S., Niassy, S., Salifu, D., du Plessis, H., Ekesi, S., & Maniania, N. K. (2016b). Screening for attractants compatible with Metarhizium anisopliae for use in thrips management. African Journal of Biotechnology, 15, 714–721.

    Article  CAS  Google Scholar 

  • Mfuti, D. K., Niassy, S., Subramanian, S., du Plessis, H., Ekesi, S., & Maniania, N. K. (2017). Lure and infect strategy for application of entomopathogenic fungus for the control of bean flower thrips in cowpea. BioControl, 107, 70–76.

    Google Scholar 

  • Migiro, L. N., Maniania, N. K., Chabi-Olaye, A., & Vandenberg, J. (2010). Pathogenicity of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) isolates to the adult pea leafminer (Diptera: Agromyzidae) and prospects of an autoinoculation device for infection in the field. Environmental Entomology, 39, 468–475.

    Article  CAS  Google Scholar 

  • Murai, T., Imai, T., & Maekawa, M. (2000). Methyl anthranilate as an attractant for two thrips species and the thrips parasitoid Ceranisus menes. Journal of Chemical Ecology, 26, 2557–2565.

    Article  CAS  Google Scholar 

  • Muvea, A. M., Waiganjo, M. M., Kutima, H. L., Osiemo, Z., Nyasani, J. O., & Subramanian, S. (2014). Attraction of pest thrips (Thysanoptera: Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations. International Journal of Tropical Insect Science, 34, 197–206.

    Google Scholar 

  • Nana, P., Nchu, F., Ekesi, S., Boga, H. I., Kamtchouing, P., & Maniania, N. K. (2014). Efficacy of spot-spray application of Metarhizium anisopliae formulated in emulsifiable extract of Calpurnia aurea in attracting and infecting adult Rhipicephalus appendiculatus ticks in semifield experiments. Journal of Pest Science, 88, 613–619. https://doi.org/10.1007/s10340-014-0637-8.

    Article  Google Scholar 

  • Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, L. M., & Ekesi, S. (2012a). Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomologia Experimentalis et Applicata, 142, 97–103.

    Article  Google Scholar 

  • Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, L. M., Mburu, D. M., Masiga, D., & Ekesi, S. (2012b). Selection of promising fungal biological control agent of the western flower thrips Frankliniella occidentalis (Pergande). Letters in Applied Microbiology, 54, 487–493.

    Article  CAS  Google Scholar 

  • Pearsall, I. A., & Myers, J. H. (2000). Population dynamics of western flower thrips (Thysanoptera: Thripidae) in British Columbia. Journal of Economic Entomology, 93, 264–275.

    Article  CAS  Google Scholar 

  • R Core Development Team. (2014). A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rachie, K. O. (1985). Introduction. In R. H. Singh & K. O. Rachie (Eds.), Cowpea research, production and utilization (pp. XXI–XXVIII). Chichester: Wiley.

    Google Scholar 

  • Smits, N., Fargues, J., Rougier, M., Goujet, R., & Itier, B. (1996). Effect of temperature and solar radiation interactions on the survival of quiescent conidia of the entomopathogenic fungus Paecilomyces fumusoroseus (Wize) Brown and Smith. Mycopathologia, 135, 163–170.

    Article  CAS  Google Scholar 

  • Teulon, D. A. J., Davidson, M. M., Ducan, I. H., Dale, E. J., Cllum, D. F., Lesley, L., Vanessa, C. G., & Nigel, B. P. (2007). 4-Pyridyl carbonyl and related compounds as thrips lures: Effectiveness for onion thrips and New Zealand flower thrips in field experiments. Journal of Agricultural and Food Chemistry, 55, 6198–6205.

    Article  CAS  Google Scholar 

  • Teulon, D. A. J., Castañé, C., Nielsen, M.-C., El-Sayed, A. M., Davidson, M. M., Gardner-Gee, R., et al. (2014). Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. Journal of the New Zealand Plant Protection Society, 67, 175–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the African Union through the African Union Research Grant (Contract AURG/108/2012). We acknowledge ICIPE, Duduville, Nairobi (Kenya) and ICIPE-ITOC, Mbita (Kenya) for field facilities. We are grateful to Mrs. Pascal Oreng, Daniel Ouma, Eleisha Orima and Gregory Chebire for technical assistance. We are grateful to the German Academic Exchange Services (DAAD), the African Regional Postgraduate Programme in Insect Science (ARPPIS) of ICIPE, and the African Union Project on Grain Legumes for financial support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Mfuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mfuti, D.K., Subramanian, S., Niassy, S., du Plessis, H., Ekesi, S., Maniania, N.K. (2020). Semiochemical-Baited Autodissemination Device for Managing BFT on Cowpea. In: Niassy, S., Ekesi, S., Migiro, L., Otieno, W. (eds) Sustainable Management of Invasive Pests in Africa. Sustainability in Plant and Crop Protection, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-41083-4_20

Download citation

Publish with us

Policies and ethics