Skip to main content

Smart Beam Element Approach for LRPH Device

  • Conference paper
  • First Online:
Proceedings of XXIV AIMETA Conference 2019 (AIMETA 2019)

Abstract

LRPH (Limited Resistance Rigid Perfectly Plastic Hinge) device is a special steel device mainly usable to join beam elements of plane or spatial steel frames covered by patent n. 102017000088597 at the Italian Ministry of Economic Development and identified in the International Patent System with the number PCT/IB2018/055766. In the framework of moment (rigid) connection, the main fundamental innovation of LRPH consists in the mutual independence of its own resistance and stiffness features. The device is constituted by a sequence of three steel elements of limited length bounded by two parallel steel plates joined up with the connected structure elements. The cross-sections of the three steel elements are classical I sections with appropriate wing and web thicknesses obtained by the solution of suitable optimal design problem. Therefore, the overall device shows piecewise discrete geometric and mechanical features. In order to implement this device in a frame-oriented code for the design of both 2D and 3D frame structures, it is necessary to adopt a suitable model based on a non-uniform cross section beam element. The latter element should be able to reproduce the elastic and plastic behavior of the device. Recently, in the literature it has been proposed a new inelastic beam element, belonging to the displacement based approach and formulated for uniform beams, based on variable displacement shape functions, whose analytic expressions are prone to updating (smart) in accordance to the plastic deformation evolution in the beam element. Aim of the paper is to utilize the relevant smart displacement beam element approach and extend it to the case of non-uniform beams to evaluate the nonlinear behavior of the LRPH device. The obtained results confirm the efficacy and the feasibility of the smart displacement beam element opening the way of implementing LRPH device in a FEM code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, D.K.: Lessons learned from the Northridge earthquake. Eng. Struct. 20(4–6), 249–260 (1998)

    Google Scholar 

  2. Nakashima, M., Inoue, K., Tada, M.: Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Eng. Struct. 20(4–6), 271–281 (1998)

    Google Scholar 

  3. Valente, M., Castiglioni, C.A., Kanyilmaz, A.: Welded fuses for dissipative beam-to-column connections of composite steel frames: numerical analyses. J. Constr. Steel Res. 128, 498–511 (2017)

    Google Scholar 

  4. Dimakogianni, D., Dougka, G., Vayas, I.: Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2). Eng. Struct. 90, 83–95 (2015)

    Google Scholar 

  5. Wilkinson, S., Hurdman, G., Crowther, A.: A moment resisting connection for earthquake resistant structures. J. Constr. Steel Res. 62(3), 295–302 (2006)

    Google Scholar 

  6. Kumar, S.S., Rao, D.P.: RHS beam-to-column connection with web opening experimental study and finite element modelling. J. Constr. Steel Res. 62(8), 739–746 (2006)

    Google Scholar 

  7. Chou, C.C., Tsai, K.C., Wang, Y.Y., Jao, C.K.: Seismic rehabilitation performance of steel side plate moment connections. Earthq. Eng. Struct. Dyn. 39(1), 23–44 (2010)

    Google Scholar 

  8. Dougka, G., Dimakogianni, D., Vayas, I.: Innovative energy dissipation systems (FUSEIS 1-1) - experimental analysis. J. Constr. Steel Res. 96, 69–80 (2014)

    Google Scholar 

  9. Nikoukalam, M., Dolatshahi, K.M.: Development of structural shear fuse in moment resisting frames. J. Constr. Steel Res. 114, 349–361 (2015)

    Google Scholar 

  10. Valente, M., Castiglioni, C.A., Kanyilmaz, A.: Numerical investigations of repairable dissipative bolted fuses for earthquake resistant composite steel frames. Eng. Struct. 131, 275–292 (2017)

    Google Scholar 

  11. Plumier, A.: Behaviour of connections. J. Constr. Steel Res. 29(1–3), 95–119 (1994)

    Google Scholar 

  12. Iwankiw, N.R., Carter, C.J.: The dogbone: a new idea to chew on. Mod. Steel Constr. 36(4), 18–23 (1996)

    Google Scholar 

  13. Plumier, A.: The dogbone: back to the future. Eng. J. 34(2), 61–67 (1997)

    Google Scholar 

  14. Shen, J., Kitjasateanphun, T., Srivanich, W.: Seismic performance of steel moment frames with reduced beam sections. Eng. Struct. 22(8), 968–983 (2000)

    Google Scholar 

  15. Jin, J., El-Tawil, S.: Seismic performance of steel frames with reduced beam section connections. J. Constr. Steel Res. 61(4), 453–471 (2005)

    Google Scholar 

  16. Montuori, R.: The influence of gravity loads on the seismic design of RBS connections. Open Constr. Build. Technol. J. 8(Suppl. 1:M6), 248–261 (2014)

    Google Scholar 

  17. Sofias, C.E., Kalfas, C.N., Pachoumis, D.T.: Experimental and FEM analysis of reduced beam section moment endplate connections under cyclic loading. Eng. Struct. 59, 320–329 (2014)

    Google Scholar 

  18. Momenzadeh, S., Kazemi, M.T., Asl, M.H.: Seismic performance of reduced web section moment connections. Int. J. Steel Struct. 17(2), 413–425 (2017)

    Google Scholar 

  19. EN 1993-1-8:2006, Eurocode 3: Design of Steel Structures Part 1-8: Design of Joints (2006)

    Google Scholar 

  20. Italian Ministry of Infrastructure and Transport, National Standard NTC 2018, DM 17/01/2018

    Google Scholar 

  21. Morshedi, M.A., Dolatshahi, K.M., Maleki, S.: Double reduced beam section connection. J. Constr. Steel Res. 138, 283–297 (2017)

    Google Scholar 

  22. Benfratello, S., Cucchiara, C., Palizzolo, L., Tabbuso, P.: Fixed strength and stiffness hinges for steel frames. In: Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2017, Salerno, September, in Gechi Edizioni (Milano), vol. 3, pp. 1287–1296 (2017)

    Google Scholar 

  23. Benfratello, S., Palizzolo, L.: Limited resistance rigid perfectly plastic hinges for steel frames. Int. Rev. Civ. Eng. 8(6), 286–298 (2017)

    Google Scholar 

  24. Benfratello, S., Palizzolo, L., Tabbuso, P.: Optimal design of new steel connections. In: Rodrigues, H.C., et al. (eds.) Proceedings of the 6th International Conference on Engineering Optimization, EngOpt 2018, pp. 644–656 (2019)

    Google Scholar 

  25. Benfratello, S., Palizzolo, L., Tabbuso, P., Vazzano, S.: LRPH device optimization for axial and shear stresses. J. Civ. Eng. Manag. (submitted to)

    Google Scholar 

  26. Palizzolo, L., Benfratello, S., Tabbuso, P., Vazzano, S.: On the post-elastic behaviour of LRPH connections. J. Comput. Des. Eng. (submitted to)

    Google Scholar 

  27. Biondi, B., Caddemi, S.: Euler-Bernoulli beams with multiple singularities in the flexural stiffness. Eur. J. Mech. A/Solids 26(5), 789–809 (2007)

    Google Scholar 

  28. Caddemi, S., Caliò, I., Cannizzaro, F.: Closed-form solutions for stepped Timoshenko beams with internal singularities and along-axis external supports. Arch. Appl. Mech. 83, 559–577 (2013)

    Google Scholar 

  29. Caddemi, S., Caliò, I., Cannizzaro, F., Rapicavoli, D.: A novel beam finite element with singularities for the dynamic analysis of discontinuous frames. Arch. Appl. Mech. 83(10), 1451–1468 (2013)

    Google Scholar 

  30. Hajidehi, M.R., Spada, A., Giambanco, G.: The multiple slope discontinuity beam element for nonlinear analysis of RC framed structures. Meccanica 53, 1469–1490 (2018)

    Google Scholar 

  31. Pantò, B., Rapicavoli, D., Caddemi, S., Caliò, I.: A smart displacement based (SDB) beam element with distributed plasticity. Appl. Math. Model. 44, 336–356 (2017)

    Google Scholar 

  32. Almeida, J.P., Tarquini, D., Beyer, K.: Modelling approaches for inelastic behaviour of RC walls: multi-level assessment and dependability of results. Arch. Comput. Methods Eng. 23, 69–100 (2016)

    Google Scholar 

  33. Bentz, E.C.: Sectional analysis of reinforced concrete members. Ph.D. thesis, Department of Civil Engineering, University of Toronto (2000)

    Google Scholar 

  34. Ceresa, P., Petrini, L., Pinho, R.: Flexure-shear fiber beam-column elements for modeling frame structures under seismic loading—state of the art. J. Earthquake Eng. 11(S1), 46–88 (2007)

    Google Scholar 

  35. Kagermanov, A., Ceresa, P.: Fiber-section model with an exact shear strain profile for two-dimensional RC frame structures. J. Struct. Eng. 143(10), 04017132 (2017)

    Google Scholar 

  36. Vecchio, F.J., Collins, M.P.: The modified compression-field theory for reinforced concrete elements subjected to shear. J. Proc. 83, 219–231 (1986)

    Google Scholar 

Download references

Acknowledgements

This work is part of the National Research Project “Advanced mechanical modelling of new materials and structures for the solution of 2020 Horizon challenges” (2017–2020), supported by MIUR, Grant No. 2015JW9NJT, Scientific coordinator, Prof. M. Di Paola, prot. n. 2015JW9NJT_017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Benfratello .

Editor information

Editors and Affiliations

Appendix

Appendix

In this Appendix the expressions of the functions \( g_{2} \left( {x;\beta_{x,i} } \right),g_{3} \left( {x;\beta_{x,i} } \right), \) and \( f_{3} \left( {x;\beta_{z,i} } \right),f_{4} \left( {x;\beta_{z,i} } \right),f_{5} \left( {x;\beta_{z,i} } \right) \), dependent on the parameters \( \beta_{x,i} \) and \( \beta_{z,i} \) and appearing in Eqs. (7a, 7b) of the main text, are reported:

$$ \begin{array}{*{20}c} {g_{2} \left( x \right) = - x - \mathop \sum \limits_{i = 1}^{n} \left( {\frac{{\beta_{x,i} }}{{1 - \beta_{x,i} }} - \frac{{\beta_{x,i - 1} }}{{1 - \beta_{x,i - 1} }}} \right)\left( {x - x_{i} } \right)U\left( {x - x_{i} } \right)} \\ {g_{3} \left( x \right) = - \frac{{p_{x}^{\left[ 2 \right]} \left( x \right)}}{{E_{0} A_{0} }} - \mathop \sum \limits_{i = 1}^{n} \frac{1}{{E_{0} A_{0} }}\left( {\frac{{\beta_{x,i} }}{{1 - \beta_{x,i} }} - \frac{{\beta_{x,i - 1} }}{{1 - \beta_{x,i - 1} }}} \right)\left[ {p_{x}^{\left[ 2 \right]} \left( x \right) - p_{x}^{\left[ 2 \right]} \left( {x_{i} } \right)} \right]U\left( {x - x_{i} } \right)} \\ {f_{3} \left( x \right) = x^{2} + \mathop \sum \limits_{i = 1}^{n} \left( {\frac{{\beta_{z,i} }}{{1 - \beta_{z,i} }} - \frac{{\beta_{z,i - 1} }}{{1 - \beta_{z,i - 1} }}} \right)\left( {x - x_{i} } \right)^{2} U\left( {x - x_{i} } \right)} \\ {f_{4} \left( x \right) = x^{3} + \mathop \sum \limits_{i = 1}^{n} \left( {\frac{{\beta_{z,i} }}{{1 - \beta_{z,i} }} - \frac{{\beta_{z,i - 1} }}{{1 - \beta_{z,i - 1} }}} \right)\left[ {x^{3} - 3x_{i}^{2} x + 2x_{i}^{3} } \right]U\left( {x - x_{i} } \right)} \\ {f_{5} \left( x \right) = \frac{{p_{z}^{\left[ 4 \right]} \left( x \right)}}{{E_{0} J_{0} }} + \mathop \sum \limits_{i = 1}^{n} \frac{1}{{E_{0} J_{0} }}\left( {\frac{{\beta_{z,i} }}{{1 - \beta_{z,i} }} - \frac{{\beta_{z,i - 1} }}{{1 - \beta_{z,i - 1} }}} \right)\left[ {p_{z}^{\left[ 4 \right]} \left( x \right) - p_{z}^{\left[ 4 \right]} \left( {x_{i} } \right)} \right]U\left( {x - x_{i} } \right)} \\ { - \mathop \sum \limits_{i = 1}^{n} \left( {\frac{{\beta_{z,i} }}{{1 - \beta_{z,i} }} - \frac{{\beta_{z,i - 1} }}{{1 - \beta_{z,i - 1} }}} \right)p_{z}^{\left[ 3 \right]} \left( {x_{i} } \right)\left( {x - x_{i} } \right)U\left( {x - x_{i} } \right)} \\ \end{array} $$

where \( p_{x}^{\left[ k \right]} \left( x \right) \), \( p_{z}^{\left[ k \right]} \left( x \right) \) indicate the k-th primitive functions of the relevant external load distributions \( p_{x} \left( x \right) \), \( p_{z} \left( x \right) \), respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benfratello, S., Caddemi, S., Palizzolo, L., Pantò, B., Rapicavoli, D., Vazzano, S. (2020). Smart Beam Element Approach for LRPH Device. In: Carcaterra, A., Paolone, A., Graziani, G. (eds) Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41057-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41057-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41056-8

  • Online ISBN: 978-3-030-41057-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics