Skip to main content

Theoretical Estimates of the Accuracy of Determination of Geometric Parameters of Objects on Digital Images

  • Conference paper
  • First Online:
Automation 2020: Towards Industry of the Future (AUTOMATION 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1140))

Included in the following conference series:

  • 554 Accesses

Abstract

The article provides theoretical estimates of the accuracy of determining the geometric parameters of objects in digital images. The geometric parameter error estimates take into account a digital video conversion with measurement information about the geometric parameters. This transformation takes place in the process of imaging by a digital video camera, which is a part of the measurement of mechanical quantities. Therefore, the article considers the measurement errors caused by the quantization of video signal level and sampling, and their statistical characteristics. The results can be used to calculate geometrical measurement errors and measurements of object motion parameters, as well as to formulate requirements for hardware and software for processing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kochan, R., Kochan, O., Sachenko, A., Kochan, V.: Increasing metrological reliability of measuring channels for distributed automated control systems. In: Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019, pp. 34–40 (2019). https://doi.org/10.1109/DESSERT.2019.8770052. Article no. 8770052

  2. Shams-Nateri, A., Hasanlou, E.: Computer vision techniques for measuring and demonstrating color of textile. Appl. Comput. Vis. Fashion Textile, 189–220 (2018). https://doi.org/10.1016/b978-0-08-101217-8.00008-7

    Chapter  Google Scholar 

  3. Korobiichuk, I., Podchashinskiy, Yu., Shapovalova, O., Shadura, V., Nowicki, M., Szewczyk, R.: Precision increase in automated digital image measurement systems of geometric values. In: Advances in Intelligent Systems and Computing Book Series (AISC), vol. 393, pp. 335–340. Springer (2016). https://doi.org/10.1007/978-3-319-23923-1_51

    Google Scholar 

  4. Korobiichuk, I., Podchashinskiy, Yu., Elnikova, T., Jus, A.: Geometrical parameter measurement and phytoplankton process modeling based on video images of water samples from reservoirs. Meas. J. Int. Meas. Confed. 114, 226–232 (2018). https://doi.org/10.1016/j.measurement.2017.09.048

    Article  Google Scholar 

  5. Korobiichuk, I., Podchashinskiy, Yu., Lugovyh, O., Nowicki, M., Kachniarz, M.: Algorithmic compensation of video image dynamic errors with measurement data about geometric and object motion parameters. Measurement 105, 66–71 (2017). https://doi.org/10.1016/j.measurement.2017.04.009

    Article  Google Scholar 

  6. Korobiichuk, I., Podchashinskiy, Yu., Bezvesilna, O., Nechay, S., Shavurskiy Yu.: Three-coordinate gravimeter with exhibition of axis sensitivity based on digital videoimages. In: ICIGP 2019: Proceedings of 2nd International Conference on Image and Graphics Processing, pp. 89–93 (2019). https://doi.org/10.1145/3313950.3314187

  7. Measurements in LabVIEW. Application Guide. Training Center “Technology Center National Instruments”. NSTU, Novosibirsk (2006). 360 p.

    Google Scholar 

  8. Parente, F.R., Santonico, M., Zompanti, A., Benassai, M., Ferri, G., D’Amico, A., Pennazza, G.: An electronic system for the contactless reading of ECG signals. Sensors 17(11) (2017). https://doi.org/10.3390/s17112474. Article no. 2474

    Article  Google Scholar 

  9. Korobiichuk, I., Lysenko, V., Opryshko, O., Komarchyk, D., Pasichnyk, N., Juś, A.: Crop monitoring for nitrogen nutrition level by digital camera. In: Advances in Intelligent Systems and Computing, vol. 743, pp. 595–603 (2018). https://doi.org/10.1007/978-3-319-77179-3_56

    Google Scholar 

  10. Podchashinsky, Yu.O., Lugovikh, O.O., Shavursky, Yu.O.: Measurement of motion of objects based on computerized video processing. ZHDTU, Zhytomyr (2018). 192 p.

    Google Scholar 

  11. Levin, B.R.: Theoretical Foundations of Statistical Radio Engineering, 3rd edn., Revised and add. Radio and Communications, Moscow (1989). 656 p.

    Google Scholar 

  12. Barclay, L.: Fading and statistics. In: Propagation of Radiowaves, 3rd edn., pp. 45–59 (2012). https://doi.org/10.1049/pbew056e_ch4

  13. Frenzel Jr., L.E.: Electronics Explained: Fundamentals for Engineers, Technicians, and Makers, 2nd edn., pp. 1–378. Newnes, San Diego (2017)

    Google Scholar 

  14. Bryukhanov, Yu.A.: A method of analysis of periodic processes in nonautonomous discrete-time systems with quantization. J. Commun. Technol. Electron. 53(7), 807–813 (2008). https://doi.org/10.1134/S1064226908070115

    Article  Google Scholar 

  15. Lebedev, A.I.: Physics of Semiconductor Devices. Fizmatlit, Moscow (2008). 488 p.

    Google Scholar 

  16. Buckingham, M.: Noises in Electronic Devices and Systems. Mir, Moscow (1986). 399 p.

    Google Scholar 

  17. Grabar, I., Kolodnitska, R., Podchashinsky, Yu.: Hardware-software complex for research of kinetics of elastic - plastic deformations and destructions of rigid bodies. In: Proceedings of the International Scientific Conference “Mechanics 2000”, pp. 103–108 (2000)

    Google Scholar 

  18. Keränen, P., Jansson, J.-P., Mäntyniemi, A., Kostamovaara, J.: Design principles for accurate, long-range interpolating time-to-digital converters. In: CMOS Time-Mode Circuits and Systems: Fundamentals and Applications, pp. 141–176 (2015). https://doi.org/10.1201/b19228

    Book  Google Scholar 

  19. Sarwin, A.A.: Systems of non-contact measurements of geometric parameters. University Press of Leningrad, Leningrad (1983). 144 p.

    Google Scholar 

  20. Vinogradov, N.A., Yakovlev, V.N., Voskresensky, V.V., et al.: Handbook of Digital Information Processing Devices. Tekhnika, Kyiv (1988). 415 p.

    Google Scholar 

  21. Suh, Y.-W., Kim, S.-H., Kim, M.-S., Choi, J.-Y., Seo, J.-S.: A novel integrated measurement and analysis system for digital broadcasting. IEEE Trans. Consum. Electron. 55(1), 56–62 (2009). https://doi.org/10.1109/TCE.2009.4814414

    Article  Google Scholar 

  22. Shishigin, I.V., Shulman, M.G., Kolesnichenko, O.V., Zolotarev, S.A.: How to Choose a Video Camera. Lan, St. Petersburg (1996). 512 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Korobiichuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korobiichuk, I., Podchashinskiy, Y., Luhovykh, O., Levkivskyi, V., Rzeplińska-Rykała, K. (2020). Theoretical Estimates of the Accuracy of Determination of Geometric Parameters of Objects on Digital Images. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-40971-5_27

Download citation

Publish with us

Policies and ethics