Skip to main content

Alternative Splicing and Aging

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

One of the main processes involved in genetic expression is the so-called splicing in which the introns present in the precursor messenger RNA are removed, and exons are joined together, forming the mature form of mRNA. Such a process gives quite a versatility and plasticity to the genome since it can generate different mRNA isoforms from a single pre-mRNA through a process known as alternative splicing (AS). AS is a mechanism through which a higher level of complexity can be achieved, despite the relatively limited capacity of the coding transcriptome. Humans (Homo sapiens), compared to other model organisms, have a higher percentage of AS events. Aberrant splicing events have been correlated with several diseases including those correlated to age, since most of them lead to aberrant protein formation and, therefore, to misfolded protein accumulation, a process very common in these types of diseases. In this context, AS seems to be a critical process not only for therapeutic purposes but also to deeply understand the pathophysiology of diseases. Therefore, in the present chapter, we resume the main characteristics of AS and review its relationship with some of the primary age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AS:

Alternative splicing

BPS:

Branch point site

BS:

Bloom syndrome

CTD:

C-terminal domain (CTD)

DMD:

Duchenne muscular dystrophy

ESE:

Exonic splicing enhancer

ESS:

Exonic splicing silencer

HAT:

Histone acetylase

HDAC:

Histone deacetylase

HGS:

Hutchinson-Gilford syndrome

hnRNP:

Heterogeneous nuclear ribonucleoprotein

ISE:

Intronic splicing enhancer

ISS:

Intronic splicing silencer

NMD:

Nonsense-mediated mRNA decay

PD:

Parkinson’s disease

pre-mRNA:

Precursor messenger mRNA

PTC:

Premature termination codons

RNAPII:

RNA polymerase II

snRNA:

Small nuclear RNA

snRNP:

Small nuclear ribonucleoprotein

SR:

Serine-arginine-rich proteins

SS:

Splice sites

WS:

Werner syndrome

References

  1. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463(7280):457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006;126(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  3. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    Article  CAS  PubMed  Google Scholar 

  5. Kim H, Klein R, Majewski J, Ott J, Harrington ED, Boue S, et al. Estimating rates of alternative splicing in mammals and invertebrates (multiple letters). Nat Genet. 2004;36(9):915–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007;35(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Bush SJ, Tovar-Corona JM, Castillo-Morales A, Urrutia AO. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol Biol Evol. 2014;31(6):1402–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345–55.

    Article  CAS  PubMed  Google Scholar 

  9. Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.

    Article  CAS  PubMed  Google Scholar 

  10. Lee Y, Rio DC. Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fica SM, Tuttle N, Novak T, Li NS, Lu J, Koodathingal P, et al. RNA catalyses nuclear pre-mRNA splicing. Nature. 2013;503(7475):229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galej WP, Oubridge C, Newman AJ, Nagai K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature. 2013;493(7434):638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84(1):165–98.

    Article  CAS  PubMed  Google Scholar 

  15. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.

    Article  CAS  PubMed  Google Scholar 

  16. Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell. 2013;50(2):223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Änkö ML. Regulation of gene expression programmes by serine-arginine rich splicing factors. Semin Cell Dev Biol. 2014;32:11–21.

    Article  PubMed  CAS  Google Scholar 

  18. Motta-Mena LB, Heyd F, Lynch KW. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell. 2010;37(2):223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  20. Hug N, Longman D, Cáceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2015;44(4):1483–95.

    Article  Google Scholar 

  21. Hillman RT, Green RE, Brenner SE. An unappreciated role for RNA surveillance. Genome Biol. 2004;5(2):R8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Green RE, Lewis BP, Hillman RT, Blanchette M, Lareau LF, Garnett AT, et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics. 2003;19(Suppl. 1):i118–21.

    Article  PubMed  Google Scholar 

  23. Pan Q, Saltzman AL, Yoon KK, Misquitta C, Shai O, Maquat LE, et al. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev. 2006;20(2):153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature. 2007;446(7138):926–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O’Brien G, et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 2007;21(6):708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saltzman AL, Kim YK, Pan Q, Fagnani MM, Maquat LE, Blencowe BJ. Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol Cell Biol. 2008;28(13):4320–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 2007;21(13):1636–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De La Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell. 2003;12(2):525–32.

    Article  PubMed  Google Scholar 

  29. Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science. 2009;325(5940):626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol. 2009;16(9):990–5.

    Article  CAS  PubMed  Google Scholar 

  31. de Almeida SF, Carmo-Fonseca M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 2008;582(14):1971–6.

    Article  PubMed  CAS  Google Scholar 

  32. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997;385(6614):357–60.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res. 2014;42(2):701–13.

    Article  CAS  PubMed  Google Scholar 

  34. Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26(19):2119–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luco RF, Misteli T. More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev. 2011;21(4):366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luco R, Pan Q, Tominaga K, Blencowe B, Pereira-Smith O, Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327(5968):996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136(4):777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Padgett RA. New connections between splicing and human disease. Trends Genet. 2012;28(4):147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krawczak M, Thomas NST, Hundrieser B, Mort M, Wittig M, Hampe J, et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2007;28(2):150–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci. 2011;108(27):11093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, Cooper DN. The human gene mutation database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum Genomics. 2009;4(2):69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slaugenhaupt SA, Gusella JF. Familial dysautonomia. Curr Opin Genet Dev. 2002;12(3):307–11.

    Article  CAS  PubMed  Google Scholar 

  43. Sinha R, Kim YJ, Nomakuchi T, Sahashi K, Hua Y, Rigo F, et al. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res. 2018;46(10):4833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh RN, Singh NN. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv Neurobiol. 2018;20:31–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet. 2006;15(6):999–1013.

    Article  CAS  PubMed  Google Scholar 

  46. Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet. 2011;12(10):715–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7(9):710–23.

    Article  CAS  PubMed  Google Scholar 

  48. Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VMY. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem. 2008;283(19):13302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011;14(4):452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mordes D, Luo X, Kar A, Kuo D, Xu L, Fushimi K, et al. Pre-mRNA splicing and retinitis pigmentosa. Mol Vis. 2006;12:1259–71.

    CAS  PubMed  Google Scholar 

  52. Laboratories PFG. Epigenetic regulation of ageing. Nat Publ Gr [Internet]. 2015;16(10):593–610. Available from: https://doi.org/10.1038/nrm4048.

  53. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and Garb-aging. Trends Endocrinol Metab. 2017;28(3):199–212.

    Article  CAS  PubMed  Google Scholar 

  54. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology [Internet]. 2007;120(4):435–46. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17313487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell [Internet]. 2014;159(4):709–13. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25417146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Friedrich K, Lee L, Leistritz DF, Nürnberg G, Saha B, Hisama FM, et al. WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations. Hum Genet [Internet]. 2010;128(1):103–11. Available from: https://doi.org/10.1007/s00439-010-0832-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rincón A, Mora L, Rojas JA. Case report Werner’s syndrome: understanding the phenotype of premature aging – first case described in Colombia. Case Rep Genet. 2019;2019(8538325):4.

    Google Scholar 

  58. Pollex RL, Hegele RA. Hutchinson–Gilford progeria syndrome. Clin Genet [Internet]. 2004;66(5):375–81. Available from: https://doi.org/10.1111/j.1399-0004.2004.00315.x.

    Article  CAS  PubMed  Google Scholar 

  59. Lopez-Mejia IC, Vautrot V, De Toledo M, Behm-Ansmant I, Bourgeois CF, Navarro CL, et al. A conserved splicing mechanism of the LMNA gene controls premature aging. Hum Mol Genet [Internet]. 2011;20(23):4540–55. Available from: https://doi.org/10.1093/hmg/ddr385.

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez S, Coppedè F, Sagelius H, Eriksson M. Increased expression of the Hutchinson-Gilford progeria syndrome truncated lamin A transcript during cell aging. Eur J Hum Genet [Internet]. 2009;17(7):928–37. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19172989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, et al. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One [Internet]. 2007;2(12):e1269–e9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18060063.

    Article  PubMed  CAS  Google Scholar 

  62. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A [Internet]. 2007;104(12):4949–54. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17360355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skoczyńska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny Menopause Rev [Internet]. 2015;14(1):53–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26327889.

    Article  CAS  Google Scholar 

  64. Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol [Internet]. 2017;8(1):4–23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28232778.

    Article  CAS  PubMed  Google Scholar 

  65. Magnusson KP, Sandström M, Ståhlberg M, Larsson M, Flygare J, Hellgren D, et al. p53 splice acceptor site mutation and increased HsRAD51 protein expression in Bloom’s syndrome GM1492 fibroblasts. Gene [Internet]. 2000;246(1):247–54. Available from: http://www.sciencedirect.com/science/article/pii/S0378111900000688.

    Article  CAS  PubMed  Google Scholar 

  66. Besic V, Shi H, Stubbs RS, Hayes MT. Aberrant liver insulin receptor isoform a expression normalises with remission of type 2 diabetes after gastric bypass surgery. PLoS One [Internet]. 2015;10(3):e0119270. Available from: https://doi.org/10.1371/journal.pone.0119270.

    Article  PubMed  CAS  Google Scholar 

  67. Kaminska D, Hämäläinen M, Cederberg H, Käkelä P, Venesmaa S, Miettinen P, et al. Adipose tissue INSR splicing in humans associates with fasting insulin level and is regulated by weight loss. Diabetologia [Internet]. 2014;57(2):347–51. Available from: https://doi.org/10.1007/s00125-013-3097-4.

    Article  CAS  PubMed  Google Scholar 

  68. Juan-Mateu J, Villate O, Eizirik DL. Mechanisms in endocrinology: alternative splicing: the new frontier in diabetes research. Eur J Endocrinol [Internet]. 2016;174(5):R225–38. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26628584.

    Article  CAS  PubMed  Google Scholar 

  69. Wong C-M, Xu L, MY-C Y. Alternative mRNA splicing in the pathogenesis of obesity. Int J Mol Sci [Internet]. 2018;19(2):632. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29473878.

    Article  PubMed Central  CAS  Google Scholar 

  70. Dlamini Z, Mokoena F, Hull R. Abnormalities in alternative splicing in diabetes: therapeutic targets. J Mol Endocrinol [Internet]. 2017;59(2):R93–107. Available from: https://jme.bioscientifica.com/view/journals/jme/59/2/JME-17-0049.xml.

    Article  CAS  PubMed  Google Scholar 

  71. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24:2343–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. El Marabti E, Younis I. The cancer spliceome: reprograming of alternative splicing in cancer. Front Mol Biosci [Internet]. 2018;5:80. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30246013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Cummings JL. Alzheimer’s disease. N Engl J Med [Internet]. 2004;351(1):56–67. Available from: https://doi.org/10.1056/NEJMra040223.

    Article  CAS  PubMed  Google Scholar 

  74. Love JE, Hayden EJ, Rohn TT. Alternative splicing in Alzheimer’s disease. J Park Dis Alzheimer’s Dis [Internet]. 2015;2(2):6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26942228.

    Google Scholar 

  75. Cruts M, Van Broeckhoven C. Presenilin mutations in Alzheimer’s disease. Hum Mutat [Internet]. 1998;11(3):183–90. Available from: https://doi.org/10.1002/(SICI)1098-1004(1998)11:3%3C183::AID-HUMU1%3E3.0.CO.

    Article  CAS  PubMed  Google Scholar 

  76. Alam S, Suzuki H, Tsukahara T. Alternative splicing regulation of APP exon 7 by RBFox proteins. Neurochem Int [Internet]. 2014;78:7–17. Available from: http://www.sciencedirect.com/science/article/pii/S0197018614001843.

    Article  CAS  PubMed  Google Scholar 

  77. Rohn TT. Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer’s disease. Int J Mol Sci [Internet]. 2013;14(7):14908–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23867607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science [Internet]. 2003;302(5646):819 LP–822. Available from: http://science.sciencemag.org/content/302/5646/819.abstract.

    Google Scholar 

  79. Fu R-H, Liu S-P, Huang S-J, Chen H-J, Chen P-R, Lin Y-H, et al. Aberrant alternative splicing events in Parkinson’s disease. Cell Transplant [Internet]. 2013;22(4):653–61. Available from: https://doi.org/10.3727/096368912X655154.

    Article  PubMed  Google Scholar 

  80. Xu L, Lin D, Yin D, Koeffler HP. An emerging role of PARK2 in cancer. J Mol Med [Internet]. 2014;92(1):31–42. Available from: https://doi.org/10.1007/s00109-013-1107-0.

    Article  CAS  Google Scholar 

  81. Rideout HJ, Stefanis L. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson’s disease. Neurochem Res [Internet]. 2014;39(3):576–92. Available from: https://doi.org/10.1007/s11064-013-1073-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gomez-Verjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yustis-Rubio, J.C., Gomez-Verjan, J.C. (2020). Alternative Splicing and Aging. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_7

Download citation

Publish with us

Policies and ethics