Skip to main content

Boolean Threshold Networks as Models of Genotype-Phenotype Maps

  • Conference paper
  • First Online:
Complex Networks XI

Abstract

Boolean threshold networks (BTNs) are a class of mathematical models used to describe complex dynamics on networks. They have been used to study gene regulation, but also to model the brain, and are similar to artificial neural networks used in machine learning applications. In this paper we study BTNs from the perspective of genotype-phenotype maps, by treating the network’s set of nodes and connections as its genotype, and dynamic behaviour of the model as its phenotype. We show that these systems exhibit (1) Redundancy, that is many genotypes map to the same phenotypes; (2) Bias, the number of genotypes per phenotypes varies over many orders of magnitude; (3) Simplicity bias, simpler phenotypes are exponentially more likely to occur than complex ones; (4) Large robustness, many phenotypes are surprisingly robust to random perturbations in the parameters, and (5) this robustness correlates positively with the evolvability, the ability of the system to find other phenotypes by point mutations of the parameters. These properties should be relevant for the wide range of systems that can be modelled by BTNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahnert, S.E.: Structural properties of genotype–phenotype maps. J. R. Soc. Interface 14(132), 20170275 (2017). https://doi.org/10.1098/rsif.2017.0275

    Article  Google Scholar 

  2. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  3. Aral, N., Kabakçıoğlu, A.: Coherent regulation in yeast’s cell-cycle network. Phys. Biol. 12(3), 036002 (2015)

    Article  ADS  Google Scholar 

  4. Aral, N., Kabakçıoğlu, A.: Coherent organization in gene regulation: a study on six networks. Phys. Biol. 13(2), 026006 (2016)

    Article  ADS  Google Scholar 

  5. Azevedo, R.B., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(7080), 87 (2006)

    Article  ADS  Google Scholar 

  6. Bergman, A., Siegal, M.L.: Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948), 549 (2003)

    Article  ADS  Google Scholar 

  7. Boldhaus, G., Bertschinger, N., Rauh, J., Olbrich, E., Klemm, K.: Robustness of Boolean dynamics under knockouts. Phys. Rev. E 82(2), 021916 (2010)

    Article  ADS  Google Scholar 

  8. Boldhaus, G., Klemm, K.: Regulatory networks and connected components of the neutral space. Eur. Phys. J. B-Condens. Matter Complex Syst. 77(2), 233–237 (2010)

    Article  Google Scholar 

  9. Borenstein, E., Krakauer, D.C.: An end to endless forms: epistasis, phenotype distribution bias, and nonuniform evolution. PLoS Comput. Biol. 4(10), e1000202 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, H., Wang, G., Simha, R., Du, C., Zeng, C.: Boolean models of biological processes explain cascade-like behavior. Sci. Rep. 7 (2016). Article number 20067. https://www.nature.com/articles/srep20067

  11. Ciliberti, S., Martin, O.C., Wagner, A.: Innovation and robustness in complex regulatory gene networks. Proc. Natl. Acad. Sci. 104(34), 13591–13596 (2007)

    Article  ADS  Google Scholar 

  12. Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3(2), e15 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.: The ascent of the abundant: how mutational networks constrain evolution. PLoS Comput. Biol. 4(7), e1000110 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2), e1672 (2008)

    Article  ADS  Google Scholar 

  15. Davidich, M.I., Bornholdt, S.: Boolean network model predicts knockout mutant phenotypes of fission yeast. PLoS One 8(9), e71786 (2013)

    Article  ADS  Google Scholar 

  16. Dingle, K., Camargo, C.Q., Louis, A.A.: Input-output maps are strongly biased towards simple outputs. Nat. Commun. 9(1), 761 (2018)

    Article  ADS  Google Scholar 

  17. Dingle, K., Schaper, S., Louis, A.A.: The structure of the genotype-phenotype map strongly constrains the evolution of non-coding RNA. Interface Focus 5(6), 20150053 (2015)

    Article  Google Scholar 

  18. Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11), 2923–2939 (2004)

    Article  Google Scholar 

  19. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006)

    Article  Google Scholar 

  20. Giacomantonio, C.E., Goodhill, G.J.: A Boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput. Biol. 6(9), e1000936 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  22. Greenbury, S.F., Ahnert, S.E.: The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps. J. R. Soc. Interface 12(113), 20150724 (2015)

    Article  Google Scholar 

  23. Greenbury, S.F., Johnston, I.G., Louis, A.A., Ahnert, S.E.: A tractable genotype-phenotype map modelling the self-assembly of protein quaternary structure. J. R. Soc. Interface 11(95), 20140249 (2014)

    Article  Google Scholar 

  24. Greenbury, S.F., Schaper, S., Ahnert, S.E., Louis, A.A.: Genetic correlations greatly increase mutational robustness and can both reduce and enhance evolvability. PLoS Comput. Biol. 12(3), e1004773 (2016)

    Article  ADS  Google Scholar 

  25. Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision-making in biological signal transduction networks. Proc. Natl. Acad. Sci. 105(6), 1913–1918 (2008)

    Article  ADS  Google Scholar 

  26. Hopfield, J.J., Tank, D.W.: Collective computation with continuous variables. In: Disordered Systems and Biological Organization, pp. 155–170. Springer (1986)

    Google Scholar 

  27. Hopfield, J.J., Tank, D.W.: Computing with neural circuits - a model. Science 233(4764), 625–633 (1986)

    Article  ADS  Google Scholar 

  28. Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969)

    Article  ADS  Google Scholar 

  29. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  30. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)

    Article  ADS  Google Scholar 

  32. Li, H., Helling, R., Tang, C., Wingreen, N.: Emergence of preferred structures in a simple model of protein folding. Science 273(5275), 666 (1996)

    Article  ADS  Google Scholar 

  33. Li, S., Assmann, S.M., Albert, R.: Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4(10), e312 (2006)

    Article  Google Scholar 

  34. May, R.M.: Models for two interacting populations. In: Theoretical Ecology: Principles and Applications, pp. 49–70 (1976)

    Google Scholar 

  35. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nochomovitz, Y.D., Li, H.: Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output. Proc. Natl. Acad. Sci. U.S.A. 103(11), 4180–4185 (2006)

    Article  ADS  Google Scholar 

  37. Raman, K., Wagner, A.: The evolvability of programmable hardware. J. Roy. Soc. Interface 8(55), rsif20100212 (2010). https://royalsocietypublishing.org/doi/full/10.1098/rsif.2010.0212#ref-list-1

    Google Scholar 

  38. Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regulatory graphs to standard petri nets: dynamical roles and functionality of feedback circuits. In: Transactions on Computational Systems Biology VII, pp. 56–72. Springer (2006)

    Google Scholar 

  39. Schaper, S., Louis, A.A.: The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9(2), e86635 (2014)

    Article  ADS  Google Scholar 

  40. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. Proc. Roy. Soc. London B: Biol. Sci. 255(1344), 279–284 (1994)

    Article  ADS  Google Scholar 

  41. Steiner, C.F.: Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks. PLoS One 7(12), e52204 (2012)

    Article  ADS  Google Scholar 

  42. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. Basic Books, New York (2013)

    Google Scholar 

  44. Valle-PĂ©rez, G., Camargo, C.Q., Louis, A.A.: Deep learning generalizes because the parameter-function map is biased towards simple functions. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  45. Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. Roy. Soc. London B: Biol. Sci. 275(1630), 91–100 (2008)

    Article  Google Scholar 

  46. Wagner, A.: Robustness and Evolvability in Living Systems. Princeton University Press, Princeton (2013)

    Book  Google Scholar 

  47. Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)

    Article  Google Scholar 

  48. Zañudo, J.G., Aldana, M., Martínez-Mekler, G.: Boolean threshold networks: virtues and limitations for biological modeling. In: Information Processing and Biological Systems, pp. 113–151 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chico Q. Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camargo, C.Q., Louis, A.A. (2020). Boolean Threshold Networks as Models of Genotype-Phenotype Maps. In: Barbosa, H., Gomez-Gardenes, J., Gonçalves, B., Mangioni, G., Menezes, R., Oliveira, M. (eds) Complex Networks XI. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-40943-2_13

Download citation

Publish with us

Policies and ethics