Skip to main content

Attempts to Develop Artificial Muscles

  • Chapter
  • First Online:
Novel Bioinspired Actuator Designs for Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 888))

  • 458 Accesses

Abstract

This chapter firstly demonstrates that the compliance of the pneumatic artificial muscles plays important role to modulate some robot behaviors. Then, it discusses our attempt to realize Xenopus-noid, a robot constructed by a 3D printer driven by real muscles. We demonstrate that the robot can swim and jump by using the living muscles. It finally mentions our attempt to develop artificial muscles from living cells, which will be very important technique to realize mech-bio hybrid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Hosoda, K., Sakaguchi, Y., Takayama, H., & Takuma, T. (2010). Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure. Autonomous Robots. https://doi.org/10.1007/s10514-009-9171-6.

    Article  Google Scholar 

  • Ishii, D., Shimizu, M., Asanuma, H., & Hosoda, K. (2018). Implementation of long lifetime dissected-muscle actuator for frog cyborg. 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017. https://doi.org/https://doi.org/10.1109/ROBIO.2017.8324387.

  • Mori, K., Shimizu, M., Miyasaka, K., Ogura, T., & Hosoda, K. (2015). Remodeling muscle cells by inducing mechanical stimulus. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-22979-9_23.

  • Seki, K., Shimizu, M., Miyasaka, K., Ogura, T., & Hosoda, K. (2016). Aligning collagen fibers by cyclic mechanical stretch for efficiently muscle cell actuator. 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016. https://doi.org/10.1109/ROBIO.2016.7866488.

  • Takuma, T., & Hosoda, K. (2006). Controlling the walking period of a pneumatic muscle walker. International Journal of Robotics Research. https://doi.org/10.1177/0278364906069187.

    Article  Google Scholar 

  • Takuma, T., & Hosoda, K. (2016). Terrain negotiation of a compliant biped robot Driven by Antagonistic Artificial Muscles. Journal of Robotics and Mechatronics. https://doi.org/10.20965/jrm.2007.p0423.

  • Tashiro, I., Shimizu, M., & Hosoda, K. (2017). Cell patterning method by vibratory stimuli. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-63537-8_59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Hosoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosoda, K., Shimizu, M. (2021). Attempts to Develop Artificial Muscles. In: Beckerle, P., Sharbafi, M.A., Verstraten, T., Pott, P.P., Seyfarth, A. (eds) Novel Bioinspired Actuator Designs for Robotics. Studies in Computational Intelligence, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-030-40886-2_9

Download citation

Publish with us

Policies and ethics