Skip to main content

Dynamic Muscle Behaviours

  • Chapter
  • First Online:
Novel Bioinspired Actuator Designs for Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 888))

  • 480 Accesses

Abstract

This chapter provides a brief biological overview of fundamental skeletal muscle mechanics and current muscle contraction theories, focusing own previous work. The overview includes dynamical 1D behavior and models of muscle fibers or whole muscles as well as some results on 3D behavior and models of muscles. One of the impressive current results is that in isometric contractions followed by a stretch, the muscle fiber acts like a linear spring with adjustable rest length. While this may suggest simpler 1D models of muscle fiber force development, effects on the level of the 3D muscle might again hamper simple descriptions. More detailed introductions to dynamical muscle behaviours can be found, e.g., in Rode and Siebert (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, B. C., & Aubert, X. M. (1952). The force exerted by active striated muscle during and after change of length. The Journal of Physiology, 117(1), 77.

    Google Scholar 

  • Arellano, C. J., Konow, N., Gidmark, N. J., & Roberts, T. J. (2019). Evidence of a tunable biological spring: Elastic energy storage in aponeuroses varies with transverse strain in vivo. Proceedings of the Royal Society B, 286(1900), 20182764.

    Article  Google Scholar 

  • Alexander, R. (1990). Three uses for springs in legged locomotion. International Journal of Robotics Research, 9(2), 53–61.

    Google Scholar 

  • Azizi, E., & Roberts, T. J. (2009). Biaxial strain and variable stiffness in aponeuroses. The Journal of Physiology, 587(17), 4309–4318.

    Article  Google Scholar 

  • Baratta, R. V., & Solomonow, M. (1992). The dynamic performance model of skeletal muscle. Critical Reviews in Biomedical Engineering, 19(6), 419–454.

    Google Scholar 

  • Burkholder, T. J., & Lieber, R. L. (2001). Sarcomere length operating range of vertebrate muscles during movement. Journal of Experimental Biology, 204(9), 1529–1536.

    Article  Google Scholar 

  • Ebashi, S., & Endo, M. (1968). Calcium ion and muscle contraction. Progress in Biophysics and Molecular Biology, 18, 123–183.

    Article  Google Scholar 

  • Edman, K. A. (1979). The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. The Journal of Physiology, 219, 143–159. https://doi.org/10.1113/jphysiol.1979.sp012804.

  • Eng, C. M., Azizi, E., & Roberts, T. J. (2018). Structural determinants of muscle gearing during dynamic contractions. Integrative and Comparative Biology, 58(2), 207–218.

    Article  Google Scholar 

  • Ettema, G. J., & Meijer, K. (2000). Muscle contraction history: Modified Hill versus an exponential decay model. Biological Cybernetics, 83(6), 491–500.

    Article  Google Scholar 

  • Gordon, A. M., Huxley, A. F., & Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170–192.

    Article  Google Scholar 

  • Granzier, H. L., Akster, H. A., & Ter Keurs, H. E. (1991). Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. American Journal of Physiology-Cell Physiology, 260(5), C1060–C1070.

    Article  Google Scholar 

  • Heidlauf, T., Klotz, T., Rode, C., Altan, E., Bleiler, C., Siebert, T., et al. (2016). A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin–titin interaction. Biomechanics and Modeling in Mechanobiology, 15(6), 1423–1437.

    Article  Google Scholar 

  • Heidlauf, T., Klotz, T., Rode, C., Siebert, T., & Röhrle, O. (2017). A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Computational Biology, 13(10), e1005773.

    Article  Google Scholar 

  • Herzog, W., & Leonard, T. R. (2000). The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. Journal of Biomechanics, 33(5), 531–542.

    Article  Google Scholar 

  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(843), 136–195.

    Google Scholar 

  • Huijing, P. A. (1996). Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. European Journal of Morphology, 34(1), 47–54.

    Article  Google Scholar 

  • Huxley, H., & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 173(4412), 973–976.

    Article  Google Scholar 

  • Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature, 173(4412), 971–973.

    Article  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, 7, 255–318.

    Article  Google Scholar 

  • Huxley, H. E. (1969). The mechanismof muscular contraction. Science, 164(886), 1356–1365.

    Article  Google Scholar 

  • Huxley, A. F., & Simmons, R. M. (1971). Proposed mechanismof force generation in striated muscle. Nature, 233, 533–538.

    Google Scholar 

  • Lloyd, D. G., & Besier, T. F. (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36, 765–776. https://doi.org/10.1016/S0021-9290(03)00010-1.

    Article  Google Scholar 

  • Meijer, K., Grootenboer, H. J., Koopman, H. F., van Der Linden, B. J. J. J., & Huijing, P. A. (1998). A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. Journal of Biomechanics, 31(6), 555–563.

    Article  Google Scholar 

  • Nishikawa, K. C., Monroy, J. A., Uyeno, T. E., Yeo, S. H., Pai, D. K., & Lindstedt, S. L. (2011). Is titin a ‘winding filament’? A new twist on muscle contraction. Proceedings of the royal society B: Biological Sciences, 279(1730), 981–990.

    Article  Google Scholar 

  • Otten, E. (1987). A myocybernetic model of the jaw system of the rat. Journal of Neuroscience Methods, 21(2–4), 287–302.

    Article  Google Scholar 

  • Rack, P. M., & Westbury, D. R. (1974). The short range stiffness of active mammalian muscle and its effect on mechanical properties. The Journal of Physiology, 240(2), 331–350.

    Article  Google Scholar 

  • Raiteri, B. J. (2018). Aponeurosis behaviour during muscular contraction: A narrative review. European Journal of Sport Science, 18(8), 1128–1138.

    Article  Google Scholar 

  • Ramsey, R. W., & Street, S. F. (1940). The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. Journal of Cellular and Comparative Physiology, 15(1), 11–34.

    Article  Google Scholar 

  • Reedy, M. C., Beall, C., & Fyrberg, E. (1989). Formation of reverse rigor chevrons by myosin heads. Nature, 339(6224), 481.

    Article  Google Scholar 

  • Roberts, T. J., Marsh, R. L., Weyand, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: The economy of minimizing work. Science, 275(5303), 1113–1115.

    Article  Google Scholar 

  • Rode, C., Siebert, T., & Blickhan, R. (2009). Titin-induced force enhancement and force depression: a ‘sticky-spring’mechanism in muscle contractions? Journal of Theoretical Biology, 259(2), 350–360.

    Article  Google Scholar 

  • Rode, C., Siebert, T., Tomalka, A., & Blickhan, R. (2016). Myosin filament sliding through thez-disc relates striated muscle fibre structure to function. Proceedings of the Royal Society of London B: BiologicalSciences, 283(1826), 20153030.

    Google Scholar 

  • Rode, C., & Siebert, T. (2017). Muscle-like actuation for locomotion. In M. Sharbafi, & A. Seyfarth (Eds.), Bioinspired Legged Locomotion: Models, Concepts, Control and Applications, pp. 564–591. Butterworth-Heinemann, 1st edition.

    Google Scholar 

  • Sartori, M., Maculan, M., Pizzolato, C., et al. (2015). Modeling and Simulating the Neuromuscular Mechanisms regulating Ankle and Knee Joint Stiffness during Human Locomotion. Journal of Neurophysiology, 114, 2509–2527. https://doi.org/10.1152/jn.00989.2014.

    Article  Google Scholar 

  • Siebert, T., Leichsenring, K., Rode, C., Wick, C., Stutzig, N., Schubert, H.,… & Böl, M. (2015). Three-dimensional muscle architecture and comprehensive dynamic properties of rabbit gastrocnemius, plantaris and soleus: input for simulation studies. PLoS One, 10(6), e0130985.

    Google Scholar 

  • Siebert, T., Rode, C., Herzog, W., Till, O., & Blickhan, R. (2008). Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biological Cybernetics, 98(2), 133–143.

    Article  MathSciNet  Google Scholar 

  • Siebert, T., Rode, C., Till, O., Stutzig, N., & Blickhan, R. (2016). Force reduction induced by unidirectional transversal muscle loading is independent of local pressure. Journal of Biomechanics, 49(7), 1156–1161.

    Article  Google Scholar 

  • Siebert, T., Stutzig, N., & Rode, C. (2018). A hill-type muscle model expansion accounting for effects of varying transverse muscle load. Journal of Biomechanics, 66, 57–62.

    Article  Google Scholar 

  • Siebert, T., Till, O., Stutzig, N., Günther, M., & Blickhan, R. (2014). Muscle force depends on the amount of transversal muscle loading. Journal of Biomechanics, 47(8), 1822–1828.

    Article  Google Scholar 

  • Till, O., Siebert, T., Rode, C., & Blickhan, R. (2008). Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination. Journal of Theoretical Biology, 255(2), 176–187.

    Article  Google Scholar 

  • Tomalka, A., Rode, C., Schumacher, J., & Siebert, T. (2017). The active force–length relationship is invisible during extensive eccentric contractions in skinned skeletal muscle fibres. Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20162497.

    Article  Google Scholar 

  • Toyoshima, Y. Y., Toyoshima, C., & Spudich, J. A. (1989). Bidirectional movement of actin filaments along tracks of myosin heads. Nature, 341(6238), 154.

    Article  Google Scholar 

  • Walker, S. M., & Schrodt, G. R. (1974). I segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. The Anatomical Record, 178(1), 63–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rode, C. (2021). Dynamic Muscle Behaviours. In: Beckerle, P., Sharbafi, M.A., Verstraten, T., Pott, P.P., Seyfarth, A. (eds) Novel Bioinspired Actuator Designs for Robotics. Studies in Computational Intelligence, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-030-40886-2_1

Download citation

Publish with us

Policies and ethics