Skip to main content

Automatic Processing of Histological Imaging to Aid Diagnosis of Cardiac Remodeling

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2020)

Abstract

Despite the growing level of research in the medical field, heart diseases are still predominant and recurrent, regardless of the degree of economic and social development of different populations. The absence of oxygen and nutrient intake causes cardiac cells to die, which are replaced by nonfunctional fibrotic tissue, leading to an accumulation of proteins in the extracellular matrix, usually replaced by collagen. The amount of interstitial collagen in myocardial fibers plays an important role in identifying changes in the heart after cardiac remodeling. This paper aims to model, implement and evaluate a method for automatic analysis of microscopic images of cardiac tissue, aiming to quantify the presence of interstitial collagen in myocardial fibers, using image processing and feature extraction techniques, in order to train a classifier that provides a reference to assist in the identification of reactive fibrosis. The method was evaluated by statistical measures, taking as reference the quantification previously performed by specialists. In the experimental tests our method achieved accuracy rate of 92.4%, showing that it is reliable and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.paho.org/bra/index.php?option=com_content&view=article&id=5253:doencas-cardiovasculares&Itemid=839.

  2. 2.

    https://opencv.org.

  3. 3.

    https://www.cs.waikato.ac.nz/ml/weka/.

References

  1. Webb, S.W., Adgey, A.A.J., Pantridge, J.F.: Autonomic disturbance at onset of acute myocardial infarction. Br. Med. J. 3, 89–92 (1972)

    Article  Google Scholar 

  2. Diez, J.: Mechanisms of cardiac fibrosis in hypertension. J. Clin. Hypertens. (Greenwich) 9, 546–550 (2007)

    Article  Google Scholar 

  3. Russo, I., Frangogiannis, N.G.: Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 90, 84–93 (2016)

    Article  Google Scholar 

  4. Cavalera, M., Wang, J., Frangogiannis, N.G.: Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl. Res. 164, 323–335 (2014)

    Article  Google Scholar 

  5. Talman, V., Ruskoaho, H.: Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 365, 563–581 (2016)

    Article  Google Scholar 

  6. Braunwald, E., Kloner, R.A.: Myocardial reperfusion: a double-edged sword? J. Clin. Invest. 76(5), 1713–1719 (1985)

    Article  Google Scholar 

  7. Piper, H.M., Garcıa-Dorado, D., Ovize, M.: A fresh look at reperfusion injury. Cardiovasc. Res. 38(2), 291–300 (1998)

    Article  Google Scholar 

  8. Yellon, D.M., Hausenloy, D.J.: Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007)

    Article  Google Scholar 

  9. Giger, M.L.: Computer-aided diagnosis of breast lesions in medical images. Comput. Sci. Eng. 2(5), 39–45 (2000)

    Article  Google Scholar 

  10. Müller, H., et al.: A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)

    Article  Google Scholar 

  11. Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. 64, 334–346 (2015)

    Article  Google Scholar 

  12. Rao, R.B., et al.: Mining medical images. In: Proceedings of the Third Workshop on Data Mining Case Studies and Practice Prize, Fifteenth Annual SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), Stanton, vol. 1895 (2009)

    Google Scholar 

  13. Eirin, A., Zhu, X.Y., Ferguson, C.M., Riester, S.M., van Wijnen, A.J., Lerman, A., Lerman, L.O.: Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease. Stem Cell Res. Ther. 6, 7 (2015)

    Article  Google Scholar 

  14. Akoum, N., Marrouche, N.: Assessment and impact of cardiac fibrosis on atrial fibrillation. Curr. Cardiol. Rep. 16(8), 518 (2014). https://doi.org/10.1007/s11886-014-0518-z

    Article  Google Scholar 

  15. Felipe, J.C.: Desenvolvimento de métodos para extração, comparação e análise de características intrísecas de imagens médicas, visando à recuperação perceptual por conteúdo (2005). https://doi.org/10.11606/T.55.2005.tde-12082006-000758. 2008, 176

  16. Gonzalez, R.C., Woods, R.C.: Processamento digital de imagens. Pearson Educación, São Paulo (2009)

    Google Scholar 

  17. Jensen, E.C.: Quantitative analysis of histological staining and fluorescence using ImageJ. Anat. Rec. (2013). https://doi.org/10.1002/ar.22641

    Article  Google Scholar 

  18. Júnior, J.S.: Morfologia dos cardiomiócitos e quantificação do colágeno no miocárdio de ratas tratadas com isoflavonas ou estrogênios. Cep, 0–5 (2012). http://www.scielo.br/pdf/rbgo/v34n10/a03v34n10.pdf

  19. Pasqualin, C., Gannier, F., Malécot, C.O., Bredeloux, P., Maupoil, V.: Automatic quantitative analysis of t-tubule organization in cardiac myocytes using ImageJ. Am. J. Physiol. Cell Physiol. (2015). https://doi.org/10.1152/ajpcell.00259.2014

    Article  Google Scholar 

  20. de Queiroz, J.E.R., Gomes, H.M.: Introdução ao Processamento Digital de Imagens. Rita 8(1), 1–31 (2001). https://doi.org/10.1590/S0102-261X1998000100035

    Article  Google Scholar 

  21. Schipke, J., Brandenberger, C., Rajces, A., Manninger, M., Alogna, A., Post, H., Mühlfeld, C.: Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification. J. Appl. Physiol. (2017). https://doi.org/10.1152/japplphysiol.00987.2016

    Article  Google Scholar 

Download references

Acknowledgments

Grant #2016/17078-0, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Adriano de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Sousa, R.A., Omoto, A.C.M., Fazan Junior, R., Felipe, J.C. (2020). Automatic Processing of Histological Imaging to Aid Diagnosis of Cardiac Remodeling. In: Rocha, Á., Ferrás, C., Montenegro Marin, C., Medina García, V. (eds) Information Technology and Systems. ICITS 2020. Advances in Intelligent Systems and Computing, vol 1137. Springer, Cham. https://doi.org/10.1007/978-3-030-40690-5_37

Download citation

Publish with us

Policies and ethics