Skip to main content

First Responders: Clinical Care of Blast Trauma in the Prehospital Setting

  • Chapter
  • First Online:
Operational and Medical Management of Explosive and Blast Incidents

Abstract

Blast trauma care in the prehospital setting focuses on the same treatment priorities as for any trauma patient. Primary blast injuries as a result of blast wave effects on the body pose a unique injury pattern that may not readily manifest at the time of prehospital encounter, so Emergency Medical Services (EMS) providers need to remain vigilant over the possible presence of primary blast injuries, consider factors that increase their likelihood, and report those factors to later treaters. The focus on correcting life-threatening conditions found during the primary survey occurs in the same fashion as with non-blast trauma patients. However, given the operational concerns, prehospital providers may have to take a tactical approach to the primary survey with increased focus on immediate life-threatening hemorrhage control. Once exsanguinating hemorrhage is identified and controlled, the provider can return to airway, breathing, circulation, and hypothermia management. Rapid triage, stabilization, and transport to appropriate definitive trauma care will ensure the best possible outcomes from blast poly-trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owens B, Kragh J, Wenke J, Macaitis J, Wade C, Holcomb J. Combat wounds in operation Iraqi freedom and operation enduring freedom. J Trauma. 2008;64(2):295–9.

    PubMed  Google Scholar 

  2. Biddinger P, Baggish A, Harrington L, d’Hemecourt P, Hooley J, Jones J, et al. Be prepared – the Boston Marathon and mass casualty events. N Engl J Med. 2013;368(21):1958–9.

    CAS  PubMed  Google Scholar 

  3. Lockey D, MacKenzie R, Redhead J, Wise D, Harris T, Weaver A, et al. London bombings July 2005: the immediate pre-hospital medical response. Resuscitation. 2005;66:ix–xii.

    CAS  PubMed  Google Scholar 

  4. Carresi AL. The 2004 Madrid train bombings: an analysis of pre-hospital management. Disasters. 2008 Mar;32(1):41–65.

    PubMed  Google Scholar 

  5. Ritenour A, Baskin T. Primary blast injury: update on diagnosis and treatment. Crit Care Med. 2008;36(Suppl):S311–7.

    PubMed  Google Scholar 

  6. Stuhmiller JH. Blast injury: translating research into operational medicine. In: Lenhart MK, Friedl K, Santee WR, editors. Military quantitative physiology: problems and concepts in operational medicine. Falls Church: Office of the Surgeon General of the United States Army; 2012. p. 267–302.

    Google Scholar 

  7. Burns GD, Wightman JM. Explosive events. In: Koenig KL, Schultz CH, editors. Koenig and Schultz’s disaster medicine: comprehensive principles and practice. 2nd ed. Cambridge, UK: Cambridge University Press; 2016. p. 463–85.

    Google Scholar 

  8. Wightman JM, Gladish SL. Explosions and blast injuries. Ann Emerg Med. 2001;37:664–78.

    CAS  PubMed  Google Scholar 

  9. DePalma R, Burris D, Champion H, Hodgson M. Blast injuries. N Engl J Med. 2005;352(13):1335–42.

    CAS  PubMed  Google Scholar 

  10. Wolf SJ, Bebarta VS, Bonnett CJ, Bonnett CJ, Pons PT, Cantrill SV, et al. Blast injuries. Lancet. 2009;374:405–15.

    PubMed  Google Scholar 

  11. Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is it a marker of pulmonary blast injury? Ann Emerg Med. 1999;34:168–72.

    CAS  PubMed  Google Scholar 

  12. Gutierrez de Ceballos JP, Turégano Fuentes F, Perez Diaz D, Sanz Sanchez M, Martin Llorente C, Guerrero Sanz JE. Casualties treated at the closest hospital in the Madrid, March 11, terrorist bombings. Crit Care Med. 2005;33(1 Suppl):S107–12.

    PubMed  Google Scholar 

  13. Sanger L-B. Nurse dies of injury suffered in rescue mission. The Oklahoman; 24 April 1995. https://newsok.com/article/2499885/nurse-dies-of-injury-suffered-in-rescue-mission. Accessed 5 Mar 2019.

  14. Vernon A. Explosive devices what every responder should know about IEDs. JEMS. 2010;35(5):42–7.

    PubMed  Google Scholar 

  15. Kapur G, Hutson H, Davis M, Rice P. The United States twenty-year experience with bombing incidents: implications for terrorism preparedness and medical response. J Trauma. 2005;59(6):1436–44.

    PubMed  Google Scholar 

  16. Gratton M, Garza A, Salomone J, McElroy J, Shearer J. Ambulance staging for potentially dangerous scenes: another hidden component of response time. Prehosp Emerg Care. 2010;14(3):340–4.

    PubMed  Google Scholar 

  17. Olson K. Overview: recent events and responder implications. Proceedings of the seminar on responding to the consequences of chemical and biological terrorism. 1996. 2(36):2–93.

    Google Scholar 

  18. Morris L. Islamic State militants allegedly used chlorine gas against Iraqi security forces. Washington Post. 23 Oct 2014.

    Google Scholar 

  19. US Department of Health and Human Services, Chemical Hazards Emergency Medical Management. https://chemm.nlm.nih.gov/detailedinfo.htm. Accessed 18 Nov 2019.

  20. Ryan K, George D, Liu J, Mitchell P, Nelson K, Kue R. The use of field triage in disaster and mass casualty incidents: a survey of current practices by EMS personnel. Prehosp Emerg Care. 2018;22(4):520–6.

    PubMed  Google Scholar 

  21. Bloch YH, Schwartz D, Pinkert M, Blumenfeld A, Avinoam S, Hevion G, et al. Distribution of casualties in a mass-casualty incident with three local hospitals in the periphery of a densely populated area: lessons learned from the medical management of a terrorist attack. Prehosp Disaster Med. 2007;22(3):186–92.

    PubMed  Google Scholar 

  22. Pinkert M, Lehavi O, Goren OB, Raiter Y, Shamis A, Priel Z, et al. Primary triage, evacuation priorities, and rapid primary distribution between adjacent hospitals—lessons learned from a suicide bomber attack in downtown Tel-Aviv. Prehosp Disaster Med. 2008;23(4):337–41.

    PubMed  Google Scholar 

  23. Aurora century 16 theater shooting after action report for the city of Aurora. http://www.policefoundation.org/wp-content/uploads/2016/08/Aurora-Century-16-Theater-Shooting_AAR.pdf. Accessed 18 Nov 2019.

  24. Shartar SE, Moore BL, Wood LM. Developing a mass casualty surge capacity protocol for emergency medical services to use for patient distribution. South Med J. 2017;110(12):792–5.

    PubMed  Google Scholar 

  25. Clumpner M. Analysis of records that represent an active shooter response model utilizing 32 large-scale exercises. Prescott Valley: Northcentral University; 2015.

    Google Scholar 

  26. Gutierrez de Ceballos JP, Turégano Fuentes F, Perez Diaz D, Sanz Sanchez M, Martin Llorente C, Guerrero Sanz JE. Casualties treated at the closest hospital in the Madrid, March 11, terrorist bombings. Crit Care Med. 2005;33(1 Suppl):S107–12.

    PubMed  Google Scholar 

  27. Aharonson-Daniel L, Almogy G, Bahouth H, et al. Mass casualty events—suicide bombing: the Israeli perspective. In: Elsayed NM, Atkins JL, Gorbunov NV, editors. Explosion and blast-related injuries: effects of explosions and blast from military operations and acts of terrorism. London: Elsevier Academic Press; 2008. p. 307–35.

    Google Scholar 

  28. Callaway DW, Smith ER, Cain J, Shapiro G, Burnett WT, McKay SD, et al. Tactical emergency casualty care (TECC): guidelines for the provision of prehospital trauma care in high threat environments. J Spec Oper Med. 2011 Summer-Fall;11(3):104–22.

    CAS  PubMed  Google Scholar 

  29. Kosequat J, Rush SC, Simonsen I, Gallo I, Scott A, Swats K, et al. Efficacy of the mnemonic device “MARCH PAWS” as a checklist for pararescuemen during tactical field care and tactical evacuation. J Spec Oper Med. Winter 2017;17(4):80–4.

    PubMed  Google Scholar 

  30. Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7. https://doi.org/10.1097/TA.0b013e3182755dcc. Erratum in: J Trauma Acute Care Surg. 2013 Feb;74(2):706.

    Article  PubMed  Google Scholar 

  31. Ashkenazi I, Sevi R, Turégano-Fuentes F, Walsh MS, Olsha O, Schecter WP, et al. Hemodynamic consequences of extremity injuries following a terrorist bombing attack: retrospective cohort study. Eur J Trauma Emerg Surg. 2018;45:865. https://doi.org/10.1007/s00068-018-1017-5.

    Article  PubMed  Google Scholar 

  32. Heldenberg E, Givon A, Simon D, Bass A, Almogy G, Peleg K, Israeli Trauma Group. Civilian casualties of terror-related explosions: the impact of vascular trauma on treatment and prognosis. J Trauma Acute Care Surg. 2016;81(3):435–40.

    PubMed  Google Scholar 

  33. Kauvar DS, Sarfati MR, Kraiss LW. National trauma databank analysis of mortality and limb loss in isolated lower extremity vascular trauma. J Vasc Surg. 2011;53(6):1598–603.

    PubMed  Google Scholar 

  34. Fisher AD, Callaway DW, Robertson JN, Hardwick SA, Bobko JP, Kotwal RS. The ranger first responder program and tactical emergency casualty care implementation: a whole-community approach to reducing mortality from active violent incidents. J Spec Oper Med. 2015 Fall;15(3):46–53.

    PubMed  Google Scholar 

  35. Levy MJ, Jacobs LM. A call to action to develop programs for bystanders to control severe bleeding. JAMA Surg. 2016;151(12):1103–4.

    PubMed  Google Scholar 

  36. Goolsby C, Rojas L, Moore K, Kretz E, Singletary E, Klimczak V, Charlton N. Layperson ability and willingness to use hemostatic dressings: a randomized, controlled trial. Prehosp Emerg Care. 2019;15:1–7.

    Google Scholar 

  37. Bulger EM, Snyder D, Schoelles K, Gotschall C, Dawson D, Lang E, et al. An evidence-based prehospital guideline for external hemorrhage control: American College of Surgeons Committee on Trauma. Prehosp Emerg Care. 2014;18(2):163–73.

    PubMed  Google Scholar 

  38. Kauvar DS, Miller D, Walters TJ. Tourniquet use is not associated with limb loss following military lower extremity arterial trauma. J Trauma Acute Care Surg. 2018;85(3):495–9.

    PubMed  Google Scholar 

  39. Blackbourne LH, Baer DG, Eastridge BJ, Kheirabadi B, Bagley S, Kragh JF Jr, et al. Military medical revolution: prehospital combat casualty care [published corrections appear in J Trauma Acute Care. 2013;74(1):347 and J Trauma Acute Care. 2013;74(2):705]. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S372–7.

    PubMed  Google Scholar 

  40. Galante JM. Using tourniquets to stop bleeding. JAMA. 2017;317(14):1490.

    PubMed  Google Scholar 

  41. Committee on Tactical Combat Casualty Care. Recommended devices and adjuncts. 2019. Published online. https://books.allogy.com/web/tenant/8/books/f94aad5b-78f3-42be-b3de-8e8d63343866/. Accessed 18 Nov 2019.

  42. Lyles WE, Kragh JF, Aden JK, Dubick MA. Testing tourniquet use in a manikin model: two improvised techniques. J Spec Oper Med. 2015;15(4):21–6.

    PubMed  Google Scholar 

  43. King DR, Larentzakis A, Ramly EP, Boston Trauma Collaborative. Tourniquet use at the Boston Marathon bombing: lost in translation. J Trauma Acute Care Surg. 2015;78(3):594–9.

    PubMed  Google Scholar 

  44. Bennett BL, Littlejohn LF, Kheirabadi BS, Butler FK, Kotwal RS, Dubick MA, et al. Management of external hemorrhage in tactical combat casualty care: Chitosan-based hemostatic gauze dressings--TCCC guidelines-change 13-05. J Spec Oper Med. 2014 Fall;14(3):40–57.

    PubMed  Google Scholar 

  45. Wydo SM, Seamon MJ, Melanson SW, Thomas P, Bahner DP, Stawicki SP. Portable ultrasound in disaster triage: a focused review. Eur J Trauma Emerg Surg. 2016;42(2):151–9.

    CAS  PubMed  Google Scholar 

  46. Shokoohi H, Pourmand A, Boniface K, Allen R, Petinaux B, Sarani B, et al. The utility of point-of-care ultrasound in targeted automobile ramming mass casualty (TARMAC) attacks. Am J Emerg Med. 2018;36(8):1467–71.

    PubMed  Google Scholar 

  47. Davies GE, Lockey DJ. Thirteen survivors of prehospital thoracotomy for penetrating trauma: a prehospital physician-performed resuscitation procedure that can yield good results. J Trauma. 2011;70(5):E75–8.

    PubMed  Google Scholar 

  48. Van Vledder MG, Van Waes OJF, Kooij FO, Peters JH, Van Lieshout E, Verhofstad M. Out of hospital thoracotomy for cardiac arrest after penetrating thoracic trauma. Injury. 2017;48(9):1865–9.

    PubMed  Google Scholar 

  49. Darocha T, Kosinski S, Serednicki W, Derkowski T, Podsiadlo P, Szpor J, et al. Prehospital emergency thoracotomy performed by helicopter emergency medical service team: a case report. Ulus Travma Acil Cerrahi Derg. 2019;25(3):303–6.

    PubMed  Google Scholar 

  50. Henry R, Matsushima K, Henry RN, Wong V, Warriner Z, Strumwasser A, et al. Who would have benefitted from the prehospital use of resuscitative endovascular balloon occlusion of the aorta (REBOA)? An autopsy study. J Am Coll Surg. 2019. https://doi.org/10.1016/j.jamcollsurg.2019.05.025.

  51. Brede JR, Lafrenz T, Krüger A, Søvik E, Steffensen T, Kriesi C, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in non-traumatic out-of-hospital cardiac arrest: evaluation of an educational programme. BMJ Open. 2019;9(5):e027980.

    PubMed  PubMed Central  Google Scholar 

  52. Pasley JD, Teeter WA, Gamble WB, Wasick P, Romagnoli AN, Pasley AM, et al. Bringing resuscitative endovascular balloon occlusion of the aorta (REBOA) closer to the point of injury. J Spec Oper Med. 2018 Spring;18(1):33–6.

    PubMed  Google Scholar 

  53. Hardy GB, Maddry JK, Ng PC, Savell SC, Arana AA, Kester A, et al. Impact of prehospital airway management on combat mortality. Am J Emerg Med. 2018;36(6):1032–5.

    PubMed  Google Scholar 

  54. Schauer SG, Naylor JF, Chow AL, Maddry J, Cunningham CW, Blackburn MB, et al. Survival of casualties undergoing prehospital supraglottic airway placement versus cricothyrotomy. J Spec Oper Med. 2019 Summer;19(2):91–4.

    PubMed  Google Scholar 

  55. Barnard EB, Ervin AT, Mabry RL, Bebarta VS. Prehospital and en route cricothyrotomy performed in the combat setting: a prospective, multicenter, observational study. J Spec Oper Med. 2014 Winter;14(4):35–9.

    PubMed  Google Scholar 

  56. Jacobson LE, Gomez GA, Sobieray RJ, Rodman GH, Solotkin KC, Misinski ME. Surgical cricothyroidotomy in trauma patients: analysis of its use by paramedics in the field. J Trauma. 1996;41(1):15–20.

    CAS  PubMed  Google Scholar 

  57. Schober P, Hegemann MC, Schwarte LA, Loer SA, Noetges P. Emergency cricothyrotomy-a comparative study of different techniques in human cadavers. Resuscitation. 2009;80(2):204–9.

    PubMed  Google Scholar 

  58. Schauer SG, D Fernandez JR, L Roper J, Brown D, L Jeffers K, Srichandra J, et al. A randomized cross-over study comparing surgical cricothyrotomy techniques by combat medics using a synthetic cadaver model. Am J Emerg Med. 2018;36(4):651–6.

    PubMed  Google Scholar 

  59. Heymans F, Feigl G, Graber S, Courvoisier DS, Weber KM, Dulguerov P. Emergency cricothyrotomy performed by surgical airway-naive medical personnel: a randomized crossover study in cadavers comparing three commonly used techniques. Anesthesiology. 2016;125(2):295–303.

    PubMed  Google Scholar 

  60. Mlcak RP, Suman OE, Herndon DN. Respiratory management of inhalation injury. Burns. 2007;33:2–13. https://doi.org/10.1016/j.burns.2006.07.007.

    Article  PubMed  Google Scholar 

  61. Venus B, Matsuda T, Copiozo JB, Mathru M. Prophylactic intubation and continuous positive airway pressure in the management of inhalation injury in burn victims. Crit Care Med. 1981;9:519–23.

    CAS  PubMed  Google Scholar 

  62. Jonkam C, Zhu Y, Jacob S, Rehberg S, Traber LD, Herndon DN, et al. Assessment of combined muscarinic antagonist and fibrinolytic therapy for inhalation injury. J Burn Care Res. 2012;33:524–31.

    PubMed  Google Scholar 

  63. Palmieri TL, Enkhbaatar P, Bayliss R, Traber LD, Cox RA, Hawkins HK, et al. Continuous nebulized albuterol attenuates acute lung injury in an ovine model of combined burn and smoke inhalation. Crit Care Med. 2006;34:1719–24. https://doi.org/10.1097/01.ccm.0000217215.82821.c5.

    Article  CAS  PubMed  Google Scholar 

  64. Lange M, Hamahata A, Traber DL, Cox RA, Kulp GA, Nakano Y, et al. Preclinical evaluation of epinephrine nebulization to reduce airway hyperemia and improve oxygenation after smoke inhalation injury. Crit Care Med. 2011;39:718–24. https://doi.org/10.1097/CCM.0b013e318207ec52.

    Article  CAS  PubMed  Google Scholar 

  65. Otterness K, Ahn C. Emergency department management of smoke inhalation injury in adults. Emerg Med Pract. 2018;20(3):1–24.

    PubMed  Google Scholar 

  66. Weaver LK. Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med. 2014;41:339–54.

    PubMed  Google Scholar 

  67. Buckley NA, Juurlink DN, Isbister G, Bennett MH, Lavonas EJ. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev. 2011;(4):Cd002041. https://doi.org/10.1002/14651858.CD002041.pub3.

  68. Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, et al. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19:351. https://doi.org/10.1186/s13054-015-1077-4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leigh-Smith S, Harris T. Tension pneumothorax—time for a re-think? Emerg Med J. 2005;22:8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Laan DV, Vu TD, Thiels CA, Pandian TK, Schiller HJ, Murad MH, et al. Chest wall thickness and decompression failure: a systematic review and meta-analysis comparing anatomic locations in needle thoracostomy. Injury. 2016;47(4):797–804. https://doi.org/10.1016/j.injury.2015.11.045. Epub 2015 Dec 13.

    Article  PubMed  Google Scholar 

  71. Martin M, Satterly S, Inaba K, Blair K. Does needle thoracostomy provide adequate and effective decompression of tension pneumothorax? J Trauma Acute Care Surg. 2012;73(6):1412–7. https://doi.org/10.1097/TA.0b013e31825ac511.

    Article  PubMed  Google Scholar 

  72. Kaserer A, Stein P, Simmen HP, Spahn DR, Neuhaus V. Failure rate of prehospital chest decompression after severe thoracic trauma. Am J Emerg Med. 2017;35(3):469–74.

    PubMed  Google Scholar 

  73. Ferrie EP, Collum N, McGovern S. The right place in the right space? Awareness of site for needle thoracocentesis. Emerg Med J. 2005;22:788–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wernick B, Hon H, Mubang R, Cipriano A, Hughes R, Rankin D, et al. Complications of needle thoracostomy: a comprehensive clinical review. Int J Crit Ill Inj Sci. 2015;5(3):160–9.

    Google Scholar 

  75. Lesperance RN, Carroll CM, Aden JK, Young JB, Nunez TC. Failure rate of prehospital needle decompression for tension pneumothorax in trauma patients. Am Surg. 2018;84(11):1750–5.

    PubMed  Google Scholar 

  76. Dickey N. Needle decompression of tension pneumothorax—Tactical Combat Casualty Care recommendations 2012–5. Defense Health Board Memorandum dated 7 July 2012. http://health.mil/dhb/recommendations/2012/2012-05.pdf. Accessed 13 June 2013.

  77. American College of Surgeons. Advanced Trauma Life Support: 10th edition changes. http://www.emdocs.net/ready-atls-10thedition-updates/. Accessed 1 Mar 2018.

  78. Chen J, Nadler R, Schwartz D, Tien H, Cap AP, Glassberg E. Needle thoracostomy for tension pneumothorax: the Israeli Defense Forces experience. Can J Surg. 2015;58(3 Suppl 3):S118–24.

    PubMed  PubMed Central  Google Scholar 

  79. Ball CG, Wyrzykowski AD, Kirkpartick AW, Dente CJ, Nicholas JM, Salomone JP, et al. Thoracic needle decompression for tension pneumothorax: clinical correlation with catheter length. Can J Surg. 2010;53(3):184–8.

    PubMed  PubMed Central  Google Scholar 

  80. Inaba K, Ives C, McClure K, Branco BC, Eckstein M, Shatz D, et al. Radiologic evaluation of alternate sites for needle decompression of tension pneumothorax. Arch Surg. 2012;147(9):813–8.

    PubMed  Google Scholar 

  81. Laan DV, Vu TD, Thiels CA, Pandian TK, Schiller HJ, Murad MH, et al. Chest wall thickness and decompression failure: a systematic review and meta-analysis comparing anatomic locations in needle thoracostomy. Injury. 2016;47(4):797–804.

    PubMed  Google Scholar 

  82. Stevens RL, Rochester AA, Busko J, Blackwell T, Schwartz D, Argenta A, et al. Needle thoracostomy for tension pneumothorax: failure predicted by chest computed tomography. Prehosp Emerg Care. 2009;13(1):14–7.

    PubMed  Google Scholar 

  83. Schmidt U, Stalp M, Gerich T, Blauth M, Maull KI, Tscherne H. Chest tube decompression of blunt chest injuries by physicians in the field: effectiveness and complications. J Trauma. 1998;44(1):98–101.

    CAS  PubMed  Google Scholar 

  84. Millikan JS, Moore EE, Steiner E, Aragon GE, Van Way CW 3rd, et al. Complications of tube thoracostomy for acute trauma. Am J Surg. 1980;140:738–41.

    CAS  PubMed  Google Scholar 

  85. Dickson RL, Gleisberg G, Aiken M, Crocker K, Patrick C, Nichols T, et al. Emergency medical services simple thoracostomy for traumatic cardiac arrest: Postimplementation experience in a ground-based suburban/rural emergency medical services agency. J Emerg Med. 2018;55:366–71. https://doi.org/10.1016/j.jemermed.2018.05.027.

    Article  PubMed  Google Scholar 

  86. Kasotakis G, Sideris A, Yang Y, de Moya M, Alam H, King DR, et al.; Inflammation and Host Response to Injury Investigators. Aggressive early crystalloid resuscitation adversely affects outcomes in adult blunt trauma patients: an analysis of the Glue Grant database. J Trauma Acute Care Surg. 2013;74(5):1215–21; discussion 1221–2. https://doi.org/10.1097/TA.0b013e3182826e13.

  87. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63. https://doi.org/10.1097/TA.0b013e31820e77ea.

    Article  PubMed  Google Scholar 

  88. Duchesne JC, Heaney J, Guidry C, McSwain N Jr, Meade P, Cohen M, et al. Diluting the benefits of hemostatic resuscitation: a multi-institutional analysis. J Trauma Acute Care Surg. 2013;75(1):76–82. https://doi.org/10.1097/TA.0b013e3182987df3.

    Article  PubMed  Google Scholar 

  89. Story DA, Morimatsu H, Bellomo R. Hyperchloremic acidosis in the critically ill: one of the strong-ion acidoses? Anesth Analg. 2006;103(1):144–8.

    PubMed  Google Scholar 

  90. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–9.

    PubMed  Google Scholar 

  91. Phillips CR, Vinecore K, Hagg DS, Sawai RS, Differding JA, Watters JM, et al. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care. 2009;13(2):R30. https://doi.org/10.1186/cc7736.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang Y, Guo W, Gao D, You G, Wang B, Chen G, et al. Effects of Plasma-lyte A, lactated Ringer’s, and normal saline on acid-base status and intestine injury in the initial treatment of hemorrhagic shock. Am J Emerg Med. 2017;35(2):317–21. https://doi.org/10.1016/j.ajem.2016.10.007.

    Article  PubMed  Google Scholar 

  93. Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72(4):892–8. https://doi.org/10.1097/TA.0b013e31823d84a7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Valdivia A, Sailors RM, et al. Supra-normal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138:637–43.

    PubMed  Google Scholar 

  95. Kiraly LN, Differding JA, Enomoto TM, Sawai RS, Muller PJ, Diggs B, et al. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. 2006;61(1):57–64.

    PubMed  Google Scholar 

  96. Hahn RG, Lyons G. The half-life of infusion fluids: an educational review. Eur J Anaesthesiol. 2016;33(7):475–82. https://doi.org/10.1097/EJA.0000000000000436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pearce FJ, Lyons WS. Logistics of parenteral fluids in battlefield resuscitation. Mil Med. 1999;164(9):653–5.

    CAS  PubMed  Google Scholar 

  98. Ley EJ, Clond MA, Srour MK, Barnajian M, Mirocha J, Margulies DR, et al. Emergency department crystalloid resuscitation of 1.5 L or more is associated with increased mortality in elderly and nonelderly trauma patients. J Trauma. 2011;70(2):398–400. https://doi.org/10.1097/TA.0b013e318208f99b.

    Article  PubMed  Google Scholar 

  99. Sobrino J, Shafi S. Timing and causes of death after injuries. Proc (Bayl Univ Med Cent). 2013;26:120–3.

    Google Scholar 

  100. Cap AP, Pidcoke HF, Spinella P, Strandenes G, Borgman MA, Schreiber M, et al. Damage control resuscitation. Mil Med. 2018;183(Suppl_2):36–43. https://doi.org/10.1093/milmed/usy112.

    Article  PubMed  Google Scholar 

  101. McGinity AC, Zhu CS, Greebon L, Xenakis E, Waltman E, Epley E, et al. Prehospital low-titer cold-stored whole blood: philosophy for ubiquitous utilization of O-positive product for emergency use in hemorrhage due to injury. J Trauma Acute Care Surg. 2018;84(6S Suppl 1):S115–9. https://doi.org/10.1097/TA.0000000000001905.

    Article  PubMed  Google Scholar 

  102. Bahr MP, Yazer MH, Triulzi DJ, Collins RA. Whole blood for the acutely haemorrhaging civilian trauma patient: a novel idea or rediscovery? Transfus Med. 2016;26(6):406–14. https://doi.org/10.1111/tme.12329. Epub 2016 Jun 29.

    Article  CAS  PubMed  Google Scholar 

  103. Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berseus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53(Suppl. 1):107S–13S.

    PubMed  Google Scholar 

  104. Zielinski MD, Jenkins DH, Hughes JD, Badjie KS, Stubbs JR. Back to the future: the renaissance of whole-blood transfusions for massively hemorrhaging patients. Surgery. 2014;155:883–6.

    PubMed  Google Scholar 

  105. Spinella PC, Strandenes G, Rein EB, Seghatchian J, Hervig T. Symposium on fresh whole blood for severe hemorrhagic shock: from in-hospital to far forward resuscitations. Transfus Apher Sci. 2012;46:113–7.

    PubMed  Google Scholar 

  106. Strandenes G, Skogrand H, Spinnela PC, Hervig T, Rein EB. Donor performance of combat readiness skills of special forces soldiers are maintained immediately after whole blood donation: a study to support the development of a prehospital fresh whole blood transfusion program. Transfusion. 2013;53:526–30.

    PubMed  Google Scholar 

  107. Shlaifer A, Siman-Tov M, Radomislensky I, Peleg K, Shina A, Baruch EN, et al. Prehospital administration of freeze-dried plasma, is it the solution for trauma casualties? J Trauma Acute Care Surg. 2017;83(4):675–82. https://doi.org/10.1097/TA.0000000000001569.

    Article  PubMed  Google Scholar 

  108. Vu E. Data presented at special operations medicine scientific assembly, May 2015.

    Google Scholar 

  109. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    CAS  PubMed  Google Scholar 

  110. Gayet-Ageron A, Prieto-Merino D, Ker K, Shakur H, Ageron FX, Roberts I, Antifibrinolytic Trials Collaboration. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40,138 bleeding patients. Lancet. 2018;391(10116):125–32. https://doi.org/10.1016/S0140-6736(17)32455-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morrison J, Dubose J, Rasmussen T, Midwinter M. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    CAS  PubMed  Google Scholar 

  112. Marsden M, Rossetto A, Duffield C, Woolley T, Buxton W, Steynberg S, et al. Prehospital tranexamic acid shortens the interval to administration by half in Major Trauma Networks: a service evaluation. Emerg Med J. 2019;36:395–400. https://doi.org/10.1136/emermed-2018-208118. Jun 19. pii: emermed-2018-208118.

    Article  PubMed  Google Scholar 

  113. El-Menyar A, Sathian B, Wahlen BM, Abdelrahman H, Peralta R, Al-Thani H, et al. Prehospital administration of tranexamic acid in trauma patients: A 1:1 matched comparative study from a level 1 trauma center. Am J Emerg Med. 2019. pii: S0735-6757(19)30293-1. [epub ahead of print].

    Google Scholar 

  114. Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg. 2013;148(3):218–25.

    CAS  PubMed  Google Scholar 

  115. CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;3394:1713–23. https://doi.org/10.1016/S0140-6736(19)32233-0.

    Article  Google Scholar 

  116. CRASH-2 Collaborators, Intracranial Bleeding Study. Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 Intracranial Bleeding Study). BMJ. 2011;343:d3795. https://doi.org/10.1136/bmj.d3795.

    Article  Google Scholar 

  117. Sprigg N, Flaherty K, Appleton J, Al-Shahi Salman R, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391:2107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rowell S, et al. Use of tranexamic acid in patients with traumatic brain injury: results from the North American multi-center prehospital TXA for TBI trial. Proceeding of the American Academy of Neurosurgery, 4–10 May 2019, Philadelphia.

    Google Scholar 

  119. Morte D, Lammers D, Bingham J, Kuckelman J, Eckert M, Martin M. Tranexamic acid administration following head trauma in a combat setting: does tranexamic acid result in improved neurologic outcomes? J Trauma Acute Care Surg. 2019;87(1):125–9. https://doi.org/10.1097/TA.0000000000002269.

    Article  CAS  PubMed  Google Scholar 

  120. Lapostolle F, Sebbah JL, Couvreur J, Koch FX, Savary D, Tazarourte K, et al. Risk factors for onset of hypothermia in trauma victims: the HypoTraum study. Crit Care. 2012;16(4):R142.

    PubMed  PubMed Central  Google Scholar 

  121. Forristal C, Van Aarsen K, Columbus M, Wei J, Vogt K, Mal S. Predictors of hypothermia upon trauma center arrival in severe trauma patients transported to hospital via EMS. Prehosp Emerg Care. 2019;4:1–8. [epub ahead of print].

    Google Scholar 

  122. Strandenes G. Data presented at special operations medicine scientific assembly, May 2016.

    Google Scholar 

  123. Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E. The incidence and economic burden of injuries in the United States. Inj Prev. 2015;21(6):434–40. https://doi.org/10.1136/ip.2005.010983rep.

    Article  CAS  PubMed  Google Scholar 

  124. Bell JM, Brelding M, Jenkins EL, Haarbauer-Krupa J. Report to congress: traumatic brain injury in the United States: epidemiology and rehabilitation. Atlanta: US Centers for Disease Control and Prevention; 2014. p. 18. Accessed 24 Nov 2019.

    Google Scholar 

  125. Spaite DW, Bobrow BJ, Kein SM, Barnhart B, Chikani V, Gaither JB, et al. Association of statewide implementation of the prehospital traumatic brain injury treatment guidelines with patient survival following traumatic brain injury. The Excellence in Prehospital Injury Care (EPIC) Study. JAMA Surg. 2019;154(7):e191152.

    PubMed  PubMed Central  Google Scholar 

  126. Wilson M, Hinds J, Grier G, Burns B, Carley S, Davies G. Impact brain apnea – a forgotten cause of cardiovascular collapse in trauma. Resuscitation. 2016;105:52–8.

    PubMed  Google Scholar 

  127. Spaite D, Hu C, Bobrow B, Chikani V, Sherrill D, Barnhart B, et al. Mortality and prehospital blood pressure in patients with major traumatic brain injury implications for the hypotension threshold. JAMA Surg. 2017;152(4):360–8.

    PubMed  PubMed Central  Google Scholar 

  128. Feldman Z, Kanter M, Robertson CS, Contant CF, Hayes C, Sheinberg MA, et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head injured patients. J Neurosurg. 1992;76(2):207–11.

    CAS  PubMed  Google Scholar 

  129. French L, McCrea M, Baggett M. The military acute concussion evaluation (MACE). J Spec Oper Med. 2008;1:68–77.

    Google Scholar 

  130. Stone M, Safadjou S, Farber B, Velazco N, Man J, Reddy SH, et al. Utility of the Military Acute Concussion Evaluation as a screening tool for mild traumatic brain injury in a civilian trauma population. J Trauma Acute Care Surg. 2015;79(1):147–51.

    PubMed  Google Scholar 

  131. Wedmore IS, Kotwal RS, McManus JG, Pennardt A, Talbot TS, Fowler M, McGhee L. Safety and efficacy of oral transmucosal fentanyl citrate for prehospital pain control on the battlefield. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S490–5. https://doi.org/10.1097/TA.0b013e3182754674.

    Article  CAS  PubMed  Google Scholar 

  132. Moeller-Bertram T, Keltner J, Strigo IA. Pain and post traumatic stress disorder - review of clinical and experimental evidence. Neuropharmacology. 2012;62(2):586–97.

    CAS  PubMed  Google Scholar 

  133. Polomano RC, Buckenmaier CC, Kwon KH, Hanlon AL, Rupprecht C, Goldberg C, et al. Effects of low-dose IV ketamine on peripheral and central pain from major limb injuries sustained in combat. Pain Med. 2013;14(7):1088–100.

    PubMed  Google Scholar 

  134. Wenderoth BR, Kaneda ET, Amini A, Amini R, Patanwala AE. Morphine versus fentanyl for pain due to traumatic injury in the emergency department. J Trauma Nurs. 2013;20(1):10–5. https://doi.org/10.1097/JTN.0b013e31828660b5.

    Article  PubMed  Google Scholar 

  135. Hermens JM, Ebertz JM, Hanifin JM, Hirshman CA. Comparison of histamine release in human skin mast cells induced by morphine, fentanyl, and oxymorphone. Anesthesiology. 1985;62(2):124–9.

    CAS  PubMed  Google Scholar 

  136. Tawfic QA. A review of the use of ketamine in pain management. J Opioid Manag. 2013;9(5):379–88.

    PubMed  Google Scholar 

  137. Beaudoin FL, Lin C, Guan W, Merchant RC. Low-dose ketamine improves pain relief in patients receiving intravenous opioids for acute pain in the emergency department: results of a randomized, double-blind, clinical trial. Acad Emerg Med. 2014;21(11):1193–202.

    PubMed  Google Scholar 

  138. Mahshidfar B, Rezai M, Abbasi S, Farsi D, Hafezimoghadam P, Mofidi M, et al. Intravenous acetaminophen vs. ketorolac in terms of pain management in prehospital emergency services: a randomized clinical trial. Adv J Emerg Med. 2019;3(4):e37. https://doi.org/10.22114/ajem.v0i0.130. eCollection 2019 Fall.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Butler FK, Kotwal RS, Buckenmaier CC, Edgar EP, O'Connor KC, Montgomery HR, et al. A triple-option analgesia plan for tactical combat casualty care: TCCC guidelines change 13-04. J Spec Oper Med. 2014;14(1):13–25.

    PubMed  Google Scholar 

  140. Giannau C, Baldan M. War surgery: working with limited resources in armed conflict and other situations of violence, Volume 1. International Committee of the Red Cross. Geneva. 2013. p. 257.

    Google Scholar 

  141. Bowyer GW, Cooper GJ, Rice P. Small fragment wounds: biophysics and pathophysiology. J Trauma. 1996;40(Suppl):S159–64.

    CAS  PubMed  Google Scholar 

  142. Mellor SG, Cooper GJ, Bowyer GW. Efficacy of delayed administration of benzylpenicillin in the control of infection in penetrating soft tissue injuries in war. J Trauma. 1996;40(3 Suppl):S128–34.

    CAS  PubMed  Google Scholar 

  143. Giannau C, Baldan M, Molde A. War surgery: working with limited resources in armed conflict and other situations of violence, volume 2. International Committee of the Red Cross. Geneva. 2013. p. 78.

    Google Scholar 

  144. Pickett JR. Data presented at special operations medicine scientific assembly 2019.

    Google Scholar 

  145. Singh AK, Ditkofsky NG, York JD, Abujudeh HH, Avery LA, Brunner JF, et al. Blast injuries: from improvised explosive device blasts to the Boston Marathon bombing. Radiographics. 2016;36(1):295–307. https://doi.org/10.1148/rg.2016150114.

    Article  PubMed  Google Scholar 

  146. Cuske J. The lost art of splinting. How to properly immobilize extremities & manage pain. JEMS. 2008;33(7):50–64.; quiz 66. https://doi.org/10.1016/S0197-2510(08)70253-5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Pickett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pickett, J.R., Todd, J.R., Kue, R.C. (2020). First Responders: Clinical Care of Blast Trauma in the Prehospital Setting. In: Callaway, D., Burstein, J. (eds) Operational and Medical Management of Explosive and Blast Incidents. Springer, Cham. https://doi.org/10.1007/978-3-030-40655-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40655-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40654-7

  • Online ISBN: 978-3-030-40655-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics