Skip to main content

Characterizing Liver Stiffness with Acoustic Radiation Force

  • Chapter
  • First Online:
Liver Elastography
  • 630 Accesses

Abstract

Acoustic radiation force elasticity imaging (ARFI) methods have become a viable clinical option to noninvasively evaluate the stiffness of the liver to evaluate fibrosis stage. Unlike external vibration-based methods such as transient elastography, acoustic radiation force excitations can be focused directly in the tissue of interest, while also providing real-time, ultrasonic B-mode imaging guidance and clinical evaluation. Acoustic radiation force methods are also available to screen for and characterize liver masses. Efforts to standardize and provide more consistent measurements between different manufacturer systems is being addressed by consensus documents and guideline documents, and the RSNA QIBA Ultrasonic Shear Wave Speed group is taking important steps toward characterizing the performance of these systems in calibrated elastic and viscoelastic media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nyborg WLM, Litovitz T, Davis C. Acoustic streaming, vol. IIA. New York: Academic Press; 1965. p. 265–331.

    Google Scholar 

  2. Apfel RE, Chu BT. Acoustic radiation pressure produced by a beam of sound. J Acoust Soc Am. 1982;72(6):1673–87.

    Article  Google Scholar 

  3. Doherty JR, Trahey GE, Nightingale KR, Palmeri ML. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(4):685–701.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47.

    Article  PubMed  Google Scholar 

  5. Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):436–46.

    Article  PubMed  Google Scholar 

  6. Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):426–35.

    Article  PubMed  Google Scholar 

  7. Sandrin L, Fourquet B, Hasquenoph J-M, Yon S, Fournier C, Mal F, et al. Transient elastography: a new non-invasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.

    Article  PubMed  Google Scholar 

  8. Pinton GF, Dahl JJ, Trahey GE. Rapid tracking of small displacements with ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(6):1103–17.

    Article  PubMed  Google Scholar 

  9. Nightingale KR, Church CC, Harris G, Wear KA, Bailey MR, Carson PL, et al. Conditionally increased acoustic pressures in nonfetal diagnostic ultrasound examinations without contrast agents: a preliminary assessment. J Ultrasound Med. 2015;34(7):1–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ncrp. report No. 113: exposure criteria for medical diagnostic ultrasound: I. Criteria based on thermal mechanisms: National Council on Radiation Protection and Measurements; 2002.

    Google Scholar 

  11. Deng Y, Palmeri ML, Rouze NC, Rosenzweig SJ, Abdelmalek MF, Nightingale KR. Analyzing the impact of increasing mechanical index and energy deposition on shear wave speed reconstruction in human liver. Ultrasound Med Biol. 2015;41(7):1948–57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palmeri ML, McAleavey SA, Fong KL, Trahey GE, Nightingale KR. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(11):2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosenzweig SJ, Palmeri ML, Nightingale KR. Analysis of rapid multi-focal zone ARFI imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(2):280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kasai C, Koroku N, Koyano A, Omoto R. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Ultrason Control. 1985;32(3):458–63.

    Article  Google Scholar 

  15. Loupas T, Powers JT, Gill RW. An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach. IEEE Trans Ultrason Ferroelectr Freq Control. 1995;42(4):672–88.

    Article  Google Scholar 

  16. Pesavento A, Perrey C, Krueger M, Ermert H. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(5):1057–67.

    Article  CAS  PubMed  Google Scholar 

  17. Byram B, Trahey G, Palmeri M. Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(1):132–43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Byram B, Trahey G, Palmeri M. Bayesian speckle tracking. Part II: biased ultrasound displacement estimation. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(1):144–57.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palmeri M, McAleavey S, Trahey G, Nightingale K. Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(7):1300–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol. 2015;41(5):1161–79.

    Article  PubMed  Google Scholar 

  21. Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Ultrasound Q. 2016;32(2):94–107.

    Article  PubMed  Google Scholar 

  22. Giannantonio DM, Dumont DM, Trahey GE, Byram BC. Comparison of physiological motion filters for in vivo cardiac ARFI. Ultrason Imaging. 2011;33(2):89–108.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Palmeri ML, Frinkley KD, Oldenburg KG, Nightingale KR. Characterizing acoustic attenuation of homogeneous media using focused impulsive acoustic radiation force. Ultrason Imaging. 2006;28(2):114–28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.

    Article  CAS  PubMed  Google Scholar 

  25. Lai WM, Rubin DEK. Introduction to continuum mechanics. Woburn: Butterworth-Heinmann; 1999.

    Google Scholar 

  26. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  27. Deng Y, Palmeri ML, Rouze NC, Trahey GE, Haystead CM, Nightingale KR. Quantifying image quality improvement using elevated acoustic output in B-mode harmonic imaging. Ultrasound Med Biol. 2017;43(10):2416–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Deng Y, Palmeri ML, Rouze NC, Haystead CM, Nightingale KR. Evaluating the benefit of elevated acoustic output in harmonic motion estimation in ultrasonic shear wave elasticity imaging. Ultrasound Med Biol. 2018;44(2):303–10.

    Article  PubMed  Google Scholar 

  29. Dumont DM, Byram BC. Robust tracking of small displacements with a Bayesian estimator. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(1):20–34.

    Article  PubMed  Google Scholar 

  30. Dumont DM, Walsh KM, Byram BC. Improving displacement signal-to-noise ratio for low-signal radiation force elasticity imaging using Bayesian techniques. Ultrasound Med Biol. 2016;42(8):1986–97.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Song P, Zhao H, Manduca A, Urban M, Greenleaf J, Chen S. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans Med Imaging. 2012;31:1821–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lipman SL, Rouze NC, Palmeri ML, Nightingale KR. Evaluating the improvement in shear wave speed image quality using multidimensional directional filters in the presence of reflection artifacts. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(8):1049–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huwart L, Sempoux C, Vicaut E, Salameh N, Annet L, Danse E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135(1):32–40.

    Article  PubMed  Google Scholar 

  34. Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR, Zhai L. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang MH, Palmeri ML, Rotemberg VM, Rouze NC, Nightingale KR. Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo. Ultrasound Med Biol. 2010;36(5):802–13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rouze NC, Wang MH, Palmeri ML, Nightingale KR. Robust estimation of time-of-flight shear wave speed using a Radon sum transformation. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(12):2662–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Song P, Manduca A, Zhao H, Urban MW, Greenleaf JF, Chen S. Fast shear compounding using robust 2-d shear wave speed calculation and multi-directional filtering. Ultrasound Med Biol. 2014;40(6):1343–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song P, Urban MW, Manduca A, Greenleaf JF, Chen S. Coded excitation plane wave imaging for shear wave motion detection. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(7):1356–72.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song P, Macdonald M, Behler R, Lanning J, Wang M, Urban M, et al. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE). IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(2):290–302.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rouze NC, Wang MH, Palmeri ML, Nightingale KR. Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(8):1729–40.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Palmeri M, Nightingale K, Fielding S, Rouze N, Deng YF, Lynch T, et al. RSNA QIBA ultrasound shear wave speed phase II phantom study in viscoelastic media. IEEE Int Ultra Sym. 2015.

    Google Scholar 

  42. Rouze NC, Palmeri ML, Nightingale KR, editors. Estimation of model parameters characterizing dispersion in ARFI induced shear waves in in vivo human liver. In: 2014 IEEE International Ultrasonics Symposium; 2014.

    Google Scholar 

  43. Nightingale K, Rouze N, Rosenzweig S, Wang M, Abdelmalek M, Guy C, et al. Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(1):165–75.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rouze NC, Deng Y, Trutna CA, Palmeri ML, Nightingale KR. Characterization of viscoelastic materials using group shear wave speeds. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(5):780–94.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Asbach P, Klatt D, Hamhaber U, Braun J, Somasundaram R, Hamm B, et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med. 2008;60:373–9.

    Article  PubMed  Google Scholar 

  46. Chen S, Sanchez W, Callstrom MR, Gorman B, Lewis JT, Sanderson SO, et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology. 2012;266(3):964–70.

    Article  PubMed  Google Scholar 

  47. Chen X, Shen Y, Zheng Y, Lin H, Guo Y, Zhu Y, et al. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model. Ultrasound Med Biol. 2013;39(11):2091–102.

    Article  PubMed  Google Scholar 

  48. Hall TJ, Milkowski A, Garra B, Carson P, Palmeri M, Nightingale K, et al. RSNA/QIBA: Shear wave speed as a biomarker for liver fibrosis staging. In: 2013 IEEE International Ultrasonics Symposium (IUS); 2013, pp. 397–400.

    Google Scholar 

  49. Deng Y, Rouze NC, Palmeri ML, Nightingale KR. On system-dependent sources of uncertainty and bias in ultrasonic quantitative shear-wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(3):381–93.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Palmeri ML, Qiang B, Chen S, Urban MW. Guidelines for finite-element modeling of acoustic radiation force-induced shear wave propagation in tissue-mimicking media. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):78–92.

    Article  PubMed  Google Scholar 

  51. Deng Y, Rouze NC, Palmeri ML, Nightingale KR. Ultrasonic shear wave elasticity imaging sequencing and data processing using a verasonics research scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):164–76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Palmeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palmeri, M.L. (2020). Characterizing Liver Stiffness with Acoustic Radiation Force. In: Mueller, S. (eds) Liver Elastography. Springer, Cham. https://doi.org/10.1007/978-3-030-40542-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40542-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40541-0

  • Online ISBN: 978-3-030-40542-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics