Skip to main content

Graphene Nanocomposite: Concept and Applications

  • Reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology
  • 2453 Accesses

Abstract

Graphene is a monolayer graphite sheet originated from sp2-hybridized carbon atoms. Such a component can be produced by different methods such as exfoliation, reduction, epitaxial growth, chemical vapor deposition (CVD), and so forth. It offers different lucrative properties like higher mechanical strength, thermal stability, and good electrical conductivity for which this wonder material can be used in various applications such as in electronics, packaging, medical, and many more. This carbon based compound can be used in different forms like polymer/graphene composites, metal/graphene composites, and ceramic/graphene composites and so on. In the recent days, graphene-based nanocomposites have pinched a great interest to the researchers due to its excellent beneficial properties and potential application in vast areas. In this chapter, graphene incorporated nanocomposite materials and their various potential applications (especially, in biomedical, electronic, and gas barrier application areas) have been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvi F, Ram MK, Basnayak PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412

    Article  CAS  Google Scholar 

  • An X et al (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301

    Article  CAS  Google Scholar 

  • Bhuyan SA, Uddin N, Islam M, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6:65–83

    Article  CAS  Google Scholar 

  • Blake P et al (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  Google Scholar 

  • Carpio IEM, Santos CM, Wei X, Rodrigues DF (2012) Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4:4746

    Article  Google Scholar 

  • Casiraghi C, Ferrari AC, Ohr R, Flewitt AJ, Chu DP, Robertson J (2003) Dynamic roughening of tetrahedral amorphous carbon. Phys Rev Lett 91:226104

    Article  CAS  Google Scholar 

  • Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20:1841

    Article  CAS  Google Scholar 

  • Eizenberg M, Blakely JM (1970) Carbon monolayer phase condensation on Ni(111). Surf Sci 82:228–236

    Article  Google Scholar 

  • Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 26:11277–11282

    Article  CAS  Google Scholar 

  • Frazier RM, Daly DT, Swatloski RP, Hathcock KW, South CR (2009) Recent progress in graphene-related nanotechnologies. Rec Pat Nanotechnol 3:164–176

    Google Scholar 

  • Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Article  CAS  Google Scholar 

  • Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012a) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  • Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012b) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci 409–410:156–163

    Article  Google Scholar 

  • Kang X, Wang J, Wu H, Liu J, Aksayc IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  • Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  • Kumar SK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  CAS  Google Scholar 

  • Liu Q, Nayfeh C, Nayfeh MH, Yau ST (2013) Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2:133–137

    Article  Google Scholar 

  • Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272

    Article  CAS  Google Scholar 

  • Novoselov KS, Fal VI, Colombo L, Gellert PR, Schwab MG, Kim K (2013) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–225

    Article  CAS  Google Scholar 

  • Peng E, Choo ESG, Chandrasekharan P, Yang CT, Ding J, Chuang KH, Xue JM (2012) Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8:3620–3630

    Article  CAS  Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  • Sahoo S, Dhibar S, Hatui G, Bhattacharya P, Das CK (2013) Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54:1033–1042

    Article  CAS  Google Scholar 

  • Santos CM, Tria MCR, Vergara RAM, Ahmed F, Advincula RC, Rodrigues DF (2011) Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 47:8892–8894

    Article  CAS  Google Scholar 

  • Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101

    Article  Google Scholar 

  • Tian LL, Zhuang QC, Li J, Wu C, Shi Y, Sun SG (2012) The production of self-assembled Fe2O3-graphene hybrid materials by a hydrothermal process for improved Li-cycling. Electrochim Acta 65:153–158

    Article  CAS  Google Scholar 

  • Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310

    Article  CAS  Google Scholar 

  • Wang X, Zhi L, Tsao N (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2908–2909

    Article  Google Scholar 

  • Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010a) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1–6

    Article  CAS  Google Scholar 

  • Wang Y, Zhang HJ, Lu L, Stubbs LP, Wong CC, Lin JY (2010b) Design functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 4:4753–4761

    Article  CAS  Google Scholar 

  • Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50:1135–1145

    Article  CAS  Google Scholar 

  • Xia H, Zhu D, Fu Y, Wang X (2012) CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta 83:166–174

    Article  CAS  Google Scholar 

  • Xia H, Qian Y, Fu Y, Wang X (2013) Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci 17:67–71

    Article  CAS  Google Scholar 

  • Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  • Yu Y, Chen CH, Shi Y (2007) A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv Mater 19:993

    Article  CAS  Google Scholar 

  • Zhao Y, Huangn Y, Wang Q, Wang X, Zong M (2013) Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceram Int 39:1741–1747

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wazed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ali, S.W., Bairagi, S. (2021). Graphene Nanocomposite: Concept and Applications. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-40513-7_58

Download citation

Publish with us

Policies and ethics