Skip to main content

Epidemiological, Ecological, and Public Health Effects of Antibiotics and AMR/ARGs

  • Chapter
  • First Online:
Antibiotics and Antimicrobial Resistance Genes

Abstract

Worldwide morbidity and mortality caused by infectious diseases is high, mandating high rates of antibiotic use among humans and animals. Antibiotics of anthropogenic origin often contaminate the environment. The arising ecological pressure results in alteration of bacterial “biomes,” high resistance rates in environmental microorganisms, and increase in the gene pool which contributes to antibiotic resistance. A number of such antibiotic resistance genes are carried on mobile genetic elements that can easily be exchanged between bacteria. The ecological net effect is an expanding population of resistant organisms contributing to spread of antibiotic resistance in both the clinical and the nonclinical environments. In nonclinical environments, antibiotics upset the natural symbiotic balance between microorganism and macroorganism communities. In clinical environments, while therapeutic antibiotic adverse effects are easily observed, the, impact of sub-inhibitory concentrations of antimicrobials on human health are less apparent and require investigations. In summary, impact of antimicrobial resistance is extensive, threatening not just health and food safety but also our environment. Actions are thus required to both safeguard efficacies of antimicrobial agents, and also to protect the environment from damage by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adolph TE, Grander C, Moschen AR, Tilg H (2018) Liver–microbiome axis in health and disease. Trends Immunol 39(3):712–723

    Google Scholar 

  • Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA (2011) Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9(12):1044–1049

    Article  Google Scholar 

  • Barlow M, Hall BG (2002) Phylogenetic analysis shows that the OXA b-lactamase genes have been on plasmids for millions of years. J Mol Evol 55(3):314–321

    Article  CAS  Google Scholar 

  • Barton MD (2000) Antibiotic use in animal feed and its impact on human healt. Nutr Res Rev 13(2):279–299

    Article  CAS  Google Scholar 

  • Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-Bermejo A, Fernandez-Real JM (2016) Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatr Res 80(6):777

    Article  CAS  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310

    Article  CAS  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7(4):e34953

    Article  CAS  Google Scholar 

  • Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, Knight R, Maxon ME, Northen TR, Pollard KS, Brodie EL (2016) Toward a predictive understanding of Earth’s microbiomes to address 21st century challenges. MBio 13;7(3):pii: e00714–16

    Google Scholar 

  • Bougnom BP, Zongo C, McNally A, Ricci V, Etoa FX, Thiele-Bruhn S, Piddock LJ (2019) Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environ Res 168:14–24

    Article  CAS  Google Scholar 

  • Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfeld J, Snape JR, Zhu YG (2015) Ecotoxicological assessment of antibiotics: a call for improved consideration of microorganisms. Environ Int 85:189–205

    Article  CAS  Google Scholar 

  • Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143

    Article  CAS  Google Scholar 

  • Cao Y, Wu K, Mehta R, Drew DA, Song M, Lochhead P, Nguyen LH, Izard J, Fuchs CS, Garrett WS, Huttenhower C (2018) Long-term use of antibiotics and risk of colorectal adenoma. Gut 67(4):672–678

    CAS  Google Scholar 

  • Caselli E, D’Accolti M, Vandini A, Lanzoni L, Camerada MT, Coccagna M, Branchini A, Antonioli P, Balboni PG, Di Luca D, Mazzacane S (2016) Impact of a probiotic-based cleaning intervention on the microbiota ecosystem of the hospital surfaces: focus on the resistome remodulation. PLoS One 11(2):e0148857

    Article  CAS  Google Scholar 

  • Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis 19(1): 56–66

    Google Scholar 

  • Çelik A, Eke D (2011) The assessment of cytotoxicity and genotoxicity of tetracycline antibiotic in human blood lymphocytes using CBMN and SCE analysis, in vitro. Int J Hum Genet 11(1):23–29

    Article  Google Scholar 

  • Chamosa LS, Álvarez VE, Nardelli M, Quiroga MP, Cassini MH, Centrón D (2017) Lateral antimicrobial resistance genetic transfer is active in the open environment. Sci Rep 7(1):513

    Article  CAS  Google Scholar 

  • Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R (2018) Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health 2(9):e398–e405

    Article  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–1262

    Article  CAS  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB (2011) Antibiotic resistance is ancient. Nature 477(7365):457

    Article  CAS  Google Scholar 

  • Dayan AD (1993) Allergy to antimicrobial residues in food: assessment of the risk to man. Vet Microbiol 35(3-4):213–226

    Article  CAS  Google Scholar 

  • De Kraker ME, Davey PG, Grundmann H, BURDEN Study Group (2011) Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8(10):e1001104

    Article  Google Scholar 

  • Dewdney JM, Maes L, Raynaud JP, Blanc F, Scheid JP, Jackson T, Lens S, Verschueren C (1991) Risk assessment of antibiotic residues of β-lactams and macrolides in food products with regard to their immuno-allergic potential. Food Chem Toxicol 29(7):477–483

    Article  CAS  Google Scholar 

  • Doyle CJ, O'toole PW, Cotter PD (2017) Metagenome-based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments. Environ Microbiol 19(11):4382–4391

    Article  Google Scholar 

  • Durand GA, Raoult D, Dubourg G (2019) Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents 53(4):371–382

    Google Scholar 

  • Ekwanzala MD, Dewar JB, Kamika I, Momba MNB (2018) Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infect Drug Resist 11:1907

    Article  CAS  Google Scholar 

  • Field W, Hershberg R (2015) Alarmingly high segregation frequencies of quinolone resistance alleles within human and animal microbiomes are not explained by direct clinical antibiotic exposure. Genome Biol Evol 7(6):1743–1757

    Article  CAS  Google Scholar 

  • Fitzpatrick D, Walsh F (2016) Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol 92(2):p.fiv168

    Article  CAS  Google Scholar 

  • Gensini GF, Conti AA, Lippi D (2007) The contributions of Paul Ehrlich to infectious disease. J Infect 54(3):221–224

    Article  Google Scholar 

  • Ghaisas S, Maher J, Kanthasamy A (2016) Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 158:52–62

    Article  CAS  Google Scholar 

  • Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  • Hanekamp JC, Bast A (2015) Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol 39(1):213–220

    Article  CAS  Google Scholar 

  • Heeney DD, Gareau MG, Marco ML (2018) Intestinal lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 49:140–147

    Article  CAS  Google Scholar 

  • Hofer U (2019) The cost of antimicrobial resistance. Nat Rev Microbiol 17(1):3

    Google Scholar 

  • Hoogenboom LA, van Bruchem GD, Sonne K, Enninga IC, van Rhijn JA, Heskamp H, Huveneers-Oorsprong MB, van der Hoeven JC, Kuiper HA (2002) Absorption of a mutagenic metabolite released from protein-bound residues of furazolidone. Environ Toxicol Pharmacol 11(3-4):273–287

    Article  CAS  Google Scholar 

  • Hoskin-Parr L, Teyhan A, Blocker A, Henderson AJW (2013) Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 yr: a dose-dependent relationship. Pediatr Allergy Immunol 24(8):762–771

    Article  Google Scholar 

  • Hviid A, Svanström H, Frisch M (2011) Antibiotic use and inflammatory bowel diseases in childhood. Gut 60(1):49–54

    Article  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and geno- toxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98

    Article  CAS  Google Scholar 

  • Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836

    Article  CAS  Google Scholar 

  • Joint FAO/WHO Expert Committee. on Food Additives Meeting and World Health Organization(2009) Toxicological evaluation of certain veterinary drug residues in food, vol 70. World Health Organization

    Google Scholar 

  • Kashuba E, Dmitriev AA, Kamal SM, Melefors O, Griva G, Römling U, Ernberg I, Kashuba V, Brouchkov A (2017) Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis 28(1):1345574

    Article  CAS  Google Scholar 

  • Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107(6):2319–2364

    Article  CAS  Google Scholar 

  • Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, Cahill JD, Jorgensen GR (2006) Survey of organic wastewater contaminants in biosolids destined for land application. Environ Sci Technol 40(23):7207–7215

    Article  CAS  Google Scholar 

  • Kirchhelle C (2018) Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Communications. https://doi.org/10.1057/s41599-018-0152 https://www.nature.com/articles/s41599-018-0152-2

  • Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. 10;115(15):E3463–E3470

    Google Scholar 

  • Koulenti D, Song A, Ellingboe A, Abdul-Aziz MH, Harris P, Gavey E, Lipman J (2019) Infections by multidrug-resistant gram-negative bacteria: what's new in our arsenal and what's in the pipeline? Int J Antimicrob Agents 53(3):211–224

    Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75(4):417–434

    Article  CAS  Google Scholar 

  • Kwa M, Plottel CS, Blaser MJ, Adams S (2016) The intestinal microbiome and estrogen receptor–positive female breast cancer. JNCI: J Natl Cancer Inst 108(8). https://doi.org/10.1093/jnci/djw029

  • Lamba M, Gupta S, Shukla R, Graham DW, Sreekrishnan TR, Ahammad SZ (2018) Carbapenem resistance exposures via wastewaters across New Delhi. Environ Int 119:302–308

    Article  CAS  Google Scholar 

  • Leong KS, Derraik JG, Hofman PL, Cutfield WS (2018) Antibiotics, gut microbiome and obesity. Clin Endocrinol 88(2):185–200

    Article  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12(5):371

    Article  CAS  Google Scholar 

  • Liu W, Ma J, Shen C, Wen Y, Liu W (2016) A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Res 90:24–33

    Article  CAS  Google Scholar 

  • Lofgren ET, Egizi AM, Fefferman NH (2016) Patients as patches: ecology and epidemiology in healthcare environments. Infect Control Hosp Epidemiol 37(12):1507–1512

    Article  Google Scholar 

  • Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C, Duranti S, van Sinderen D, Ventura M (2017) Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the copper age. Microbiome 5(1):5

    Article  Google Scholar 

  • Magee HY, Maurer MM, Cobos A, Pycke BF, Venkatesan AK, Magee D, Scotch M, Halden RU (2018) US nationwide reconnaissance of ten infrequently monitored antibiotics in municipal biosolids. Sci Total Environ 643:460–467

    Article  CAS  Google Scholar 

  • Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13(2):116–123

    Google Scholar 

  • O’Neill J (2016) Review on antimicrobial resistance: tackling drug-resistant infections globally—final report and recommendations (Wellcome Trust, UK Government, 2016)

    Google Scholar 

  • OECD (2018) Stemming the superbug tide: just a few dollars more. Available at: oe.cd/amr-2018

    Google Scholar 

  • Palomino JC, Martin A (2012) Is repositioning of drugs a viable alternative in the treatment of tuberculosis? J Antimicrob Chemother 68(2):275–283

    Article  CAS  Google Scholar 

  • Panizzon JP, Pilz Júnior HL, Knaak N, Ramos RC, Ziegler DR, Fiuza LM (2015) Microbial diversity: relevance and relationship between environmental conservation and human health. Braz Arch Biol Technol 58(1):137–145

    Article  Google Scholar 

  • Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17(6):526–538

    Article  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67(4):387–396

    Article  CAS  Google Scholar 

  • Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, Sweeney EL, Knox CL, Lambers DS, Jobe AH, Chougnet CA (2016) The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol 214(5):627–6e1

    Article  Google Scholar 

  • Proia L, Anzil A, Borrego C, Farrè M, Llorca M, Sanchis J, Bogaerts P, Balcázar JL, Servais P (2018) Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. J Hazard Mater 358:33–43

    Article  CAS  Google Scholar 

  • Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5(5):384

    Article  CAS  Google Scholar 

  • Revellin C, Hartmann A, Solanas S, Topp E (2018) Long term exposure of agricultural soil to veterinary antibiotics changes the population structure of symbiotic nitrogen-fixing Rhizobacteria occupying nodules of soybeans (Glycine max). Appl Environ Microbiol 84:AEM-00109

    Article  Google Scholar 

  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1-3):45–95

    Article  CAS  Google Scholar 

  • Settepani JA (1984) The hazard of using chloramphenicol in food animals. J Am Vet Med Assoc 184(8):930–931

    CAS  Google Scholar 

  • Smart DJ, Lynch AM (2011) Evaluating the genotoxicity of topoisomerase-targeted antibiotics. Mutagenesis 27(3):359–365

    Article  CAS  Google Scholar 

  • Stiemsma LT, Michels KB (2018) The role of the microbiome in the developmental origins of health and disease. Pediatrics 141(4):e20172437

    Article  Google Scholar 

  • Strachan CJL, Newsom SWB, Ashton TR (1991) The clinical use of an antibiotic-bonded graft. Eur J Vasc Surg 5(6):627–632

    Article  CAS  Google Scholar 

  • Topp E, Larsson DJ, Miller DN, Van den Eede C, Virta MP (2017) Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing. FEMS Microbiol Ecol 94(3):fix185

    Google Scholar 

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 112(18):5649–5654

    Article  CAS  Google Scholar 

  • Van Goethem MW, Pierneef R, Bezuidt OK, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of ‘historical’antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6(1):40

    Article  Google Scholar 

  • Van Schaik W (2015) The human gut resistome. R Soc Publ 370:1–9

    Google Scholar 

  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13(2):155–165

    Article  CAS  Google Scholar 

  • Westwood J, Burnett M, Spratt D, Ball M, Wilson DJ, Wellsteed S, Cleary D, Green A, Hutley E, Cichowska A and Hopkins S (2014) The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop ‘beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance’, October 14th 2013

    Google Scholar 

  • World Health Organization (2015) Global action plan on antimicrobial resistance

    Google Scholar 

  • World Health Organization (2016) United Nations High-level Meeting on Antimicrobial Resistance. In 2017-01-01]. http://www.who.int/antimicrobial-resistance/events/UNGA-meeting-amr-sept2016/en

  • Yamashita N, Yasojima M, Nakada N, Miyajima K, Komori K, Suzuki Y, Tanaka H (2006) Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms. Water Sci Technol 53(11):65–72

    Article  CAS  Google Scholar 

  • Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–e00613

    Article  CAS  Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2(9):17121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumina Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shakoor, S., Hasan, Z., Hasan, R. (2020). Epidemiological, Ecological, and Public Health Effects of Antibiotics and AMR/ARGs. In: Hashmi, M. (eds) Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-40422-2_12

Download citation

Publish with us

Policies and ethics