Skip to main content

Bioavailability of Antibiotics and Their Toxicity

  • Chapter
  • First Online:
Antibiotics and Antimicrobial Resistance Genes

Abstract

Antimicrobial agents are the gift of science against pathogenic microorganisms causing infectious diseases. Antibacterial drugs are specifically used against bacteria and are of two types, i.e., bacteriostatic that can inhibit bacterial growth and bactericidal that can cause death of bacteria. Antibacterial mainly target either cell wall synthesis (like beta-lactams, vancomycin), bacterial protein synthesis (like tetracycline, clindamycin, streptogramins, chloramphenicol, aminoglycosides, and linezolid), or nucleic acid metabolism of bacteria (like sulfonamides, trimethoprim, quinolones). Infectious diseases are the major reason of premature deaths. Mortality rate due to these ailments raised up to 50,000/day deaths in last decades. Over the past few years, optimization of the use of antibiotics has gained much concern owing to the alarming increase in bacterial resistance and lack of new antibiotic classes under development. For the optimum effect and low toxicity we prefer those antimicrobials having high oral bioavailability. Bioavailability is the portion of dose after administration by route that is bioavailable in systemic circulation without any change in characteristics for its therapeutic effect. It is one of the basic pharmacokinetic properties of drugs. Bioavailability is an important factor because it defines the dose of drug to be administered for its desired therapeutic effect. The more bioavailable a drug is, the less of its amount will be required to attain therapeutic effect and so lower will be the body exposure for high dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowicz M (2003) Hypoglycemia and hyperglycemia with fluoroquinolones. Med Lett Drugs Ther 45:64–64

    Google Scholar 

  • Abu-Basha E, Gehring R, Hantash T, Al-Shunnaq A, Idkaidek N (2009) Pharmacokinetics and bioavailability of sulfadiazine and trimethoprim following intravenous, intramuscular and oral administration in ostriches (Struthio camelus). J Vet Pharmacol Ther 32:258–263

    Article  CAS  Google Scholar 

  • Actor P, Chow AW, Dutko FJ, McKinlay MA (2000) Chemotherapeutics. Ullmann’s Encyclopedia of Industrial Chemistry

    Google Scholar 

  • Agarwal A, Kharb V, Saharan VA (2014) Process optimisation, characterisation and evaluation of resveratrol-phospholipid complexes using box-Behnken statistical design. Int Curr Pharmaceut J 3:301–308

    Article  Google Scholar 

  • Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265

    Article  CAS  Google Scholar 

  • Albarellos GA, Montoya L, Passini SM, Lupi MP, Lorenzini PM, Landoni MF (2016) Pharmacokinetics of meropenem after intravenous, intramuscular and subcutaneous administration to cats. J Feline Med Surg 18:976–980

    Article  Google Scholar 

  • Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574

    Article  CAS  Google Scholar 

  • Alexander J, Fix JA (1985) Enhancing absorption of drugs from gastrointestinal tract using acylcarnitines. Google Patents

    Google Scholar 

  • Allam AN, El Gamal S, Naggar V (2011) Bioavailability: a pharmaceutical review. Int J Novel Drug Deliv Tech 1:77–93

    Google Scholar 

  • Ambrose PJ (1984) Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet 9:222–238

    Article  CAS  Google Scholar 

  • Ambrose CT, Coons AH (1963) Studies on antibody production: VIII The inhibitory effect of chloramphenicol on the synthesis of antibody in tissue culture. J Exp Med 117:1075–1088

    Article  CAS  Google Scholar 

  • Appel GB, Neu HC (1977) The nephrotoxicity of antimicrobial agents. N Engl J Med 296:663–670

    Article  CAS  Google Scholar 

  • Baert K, De Baere S, Croubels S, De Backer P (2003) Pharmacokinetics and oral bioavailability of sulfadiazine and trimethoprim in broiler chickens. Vet Res Commun 27:301–309

    Article  CAS  Google Scholar 

  • Bahal N, Nahata MC (1992) The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin. Ann Pharmacother 26:46–55

    Article  CAS  Google Scholar 

  • Balbi H (2004) Chloramphenicol: a review. Pediatr Rev 25:284–288

    Article  Google Scholar 

  • Ball P, Mandell L, Patou G, Dankner W, Tillotson G (2004) A new respiratory fluoroquinolone, oral gemifloxacin: a safety profile in context. Int J Antimicrob Agents 23:421–429

    Article  CAS  Google Scholar 

  • Bargoni A, Cavalli R, Zara GP, Fundarò A, Caputo O, Gasco MR (2001) Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II—tissue distribution. Pharmacol Res 43:497–502

    Article  CAS  Google Scholar 

  • Barrons RW, Murray KM, Richey RM (1992) Populations at risk for penicillin-induced seizures. Ann Pharmacother 26:26–29

    Article  CAS  Google Scholar 

  • Barza M, Weinstein L (1976) Pharmacokinetics of the penicillins in man. Clin Pharmacokinet 1:297–308

    Article  CAS  Google Scholar 

  • Barza M, Furie B, Brown AE, Furie BC (1986) Defects in vitamin K-dependent carboxylation associated with moxalactam treatment. J Infect Dis 153:1166–1169

    Article  CAS  Google Scholar 

  • Bennett JE, Dolin R, Blaser MJ (2014) Principles and practice of infectious diseases, 1. Elsevier health sciences

    Google Scholar 

  • Bethell H (1977) Photo-onycholysis caused by demethylchlortetracycline. Br Med J 2:96

    Article  CAS  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    Article  CAS  Google Scholar 

  • Bhandari R, Kaur IP (2013) Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 441:202–212

    Article  CAS  Google Scholar 

  • Bissuel F, Cotte L, de Montclos M, Rabodonirina M, Trepo C (1994) Absence of systemic absorption of oral paromomycin during long-term, high-dose treatment for cryptosporidiosis in AIDS. J Infect Dis 170:749–750

    Article  CAS  Google Scholar 

  • Blumberg HM, Burman WJ, Chaisson RE, Daley CL (2003) American thoracic society/centers for disease control and prevention/infectious diseases society of America: treatment of tuberculosis. Am J Respir Crit Care Med 167:603

    Article  Google Scholar 

  • Blumenthal KG, Patil SU, Long AA (2012) The importance of vancomycin in drug rash with eosinophilia and systemic symptoms (DRESS) syndrome, allergy and asthma proceedings. OceanSide Publications, Inc, East Providence, pp 165–171

    Google Scholar 

  • Bo G (2000) Giuseppe Brotzu and the discovery of cephalosporins. Clin Microbiol Infect 6:6–8

    Article  Google Scholar 

  • Bosso JA (2005) The antimicrobial armamentarium: evaluating current and future treatment options. Pharmacotherapy 25:55S–62S

    Article  CAS  Google Scholar 

  • Breen KJ, Bryant RE, Levinson JD, Schenker S (1972) Neomycin absorption in man: studies of oral and enema administration and effect of intestinal ulceration. Ann Intern Med 76:211–218

    Article  CAS  Google Scholar 

  • Brunner M, Pernerstorfer T, Mayer BX, Eichler HG, Müller M (2000) Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med 28:1754–1759

    Article  CAS  Google Scholar 

  • Buchholtz K, Larsen CT, Hassager C, Bruun NE (2009) Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis 48:65–71

    Article  Google Scholar 

  • Cahill K (1962) Chloramphenicol hypersensitivity. A severe haemorrhagic reaction. Lancet:277–278

    Google Scholar 

  • Carson JL, Strom BL, Duff A, Gupta A, Shaw M, Lundin FE, Das K (1993) Acute liver disease associated with erythromycins, sulfonamides, and tetracyclines. Ann Intern Med 119:576–583

    Article  CAS  Google Scholar 

  • Chatterjee V, Buchanan D, Friedmann A, Green M (1986) Ocular toxicity following ethambutol in standard dosage. Br J Dis Chest 80:288–291

    Article  CAS  Google Scholar 

  • Chirumamilla SK, Padasala UD, Aravally H, Vuppalapati L, Cherukuri S (2017) Solubility and dissolution enhancement of Meropenem by Nano suspension approach. J Young Pharm 9(3):429–435

    Article  CAS  Google Scholar 

  • Chiu AM, Chuenkongkaew WL, Cornblath WT, Trobe JD, Digre KB, Dotan SA, Musson KH, Eggenberger ER (1998) Minocycline treatment and pseudotumor cerebri syndrome. Am J Ophthalmol 126:116–121

    Article  CAS  Google Scholar 

  • Chopra I (2011) Tetracyclines, antibiotic and chemotherapy (ninth edition). Elsevier, Amsterdam, pp 344–355

    Google Scholar 

  • Chung M, Schrogie JJ, Symchowicz S (1981) Pharmacokinetic study of sisomicin in humans. J Pharmacokinet Biopharm 9:535–551

    Article  CAS  Google Scholar 

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762

    Article  CAS  Google Scholar 

  • Cohlan SQ (1963) Teratogenic agents and congenital malformations. J Pediatr 63:650–659

    Article  CAS  Google Scholar 

  • Cooper WO, Griffin MR, Arbogast P, Hickson GB, Gautam S, Ray WA (2002) Very early exposure to erythromycin and infantile hypertrophic pyloric stenosis. Arch Pediatr Adolesc Med 156:647–650

    Article  Google Scholar 

  • Craig WA (1997) The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis 24:S266–S275

    Article  CAS  Google Scholar 

  • Craven GR, Gavin R, Fanning T (1969) The transfer RNA binding site of the 30 S ribosome and the site of tetracycline inhibition, cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 129–137

    Google Scholar 

  • Dasgupta A (2012) Therapeutic drug monitoring: newer drugs and biomarkers. Academic Press, New York

    Book  Google Scholar 

  • Davidson R, Cavalcanti R, Brunton JL, Bast DJ, de Azavedo JC, Kibsey P, Fleming C, Low DE (2002) Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 346:747–750

    Article  Google Scholar 

  • Demers P, Fraser D, Goldbloom R, Haworth J, LaRochelle J, MacLean R, Murray T (1968) Effects of tetracyclines on skeletal growth and dentition. A report by the nutrition Committee of the Canadian Paediatric Society. Can Med Assoc J 99:849

    CAS  Google Scholar 

  • Denamur S, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM (2008) Apoptosis induced by aminoglycosides in LLC-PK1 cells: comparative study of neomycin, gentamicin, amikacin, and isepamicin using electroporation. Antimicrob Agents Chemother 52:2236–2238

    Article  CAS  Google Scholar 

  • Domagala JM (1994) Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706

    Article  CAS  Google Scholar 

  • Dong Z, Xie S, Zhu L, Wang Y, Wang X, Zhou W (2011) Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug Deliv 18:441–450

    Article  CAS  Google Scholar 

  • Driessen O, Sorgedrager N, Michel M, Kerrebijn K, Hermans J (1978) Pharmacokinetic aspects of therapy with ampicillin and kanamycin in new-born infants. Eur J Clin Pharmacol 13:449–457

    Article  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181

    Article  CAS  Google Scholar 

  • Eckman M, Johnson T, Riess R (1975) Partial deafness after erythromycin. N Engl J Med 292:649

    CAS  Google Scholar 

  • Edelstein PH (2004) Pneumococcal resistance to macrolides, lincosamides, ketolides, and streptogramin B agents: molecular mechanisms and resistance phenotypes. Clin Infect Dis 38:S322–S327

    Article  CAS  Google Scholar 

  • Ehrlich J, Bartz QR, Smith RM, Joslyn DA (1947) Chloromyeetin, a new antibiotic from a soil actinomycete. Science (Washington) 106(2757):417

    Article  CAS  Google Scholar 

  • El-Kattan AF, Lee MS (2017) Oral bioavailability assessment: basics and strategies for drug discovery and development. Wiley, Hoboken

    Book  Google Scholar 

  • El-Komy A (1995) Disposition kinetics and bioavailability of piperacillin and cephapirin in mares. Dtsch Tierarztl Wochenschr 102:244–248

    CAS  Google Scholar 

  • Ellsworth A, Christensen D, Volpone-McMahon M (1990) Prospective comparison of patient tolerance to enteric-coated vs nonenteric-coated erythromycin. J Fam Pract 31:265–270

    CAS  Google Scholar 

  • Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A (2012) Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68:1243–1255

    Article  CAS  Google Scholar 

  • Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–570

    Article  CAS  Google Scholar 

  • Eyster H (1943) Mechanism of sulfanilamide action and its interaction with p-amino benzoic acid. J Cell Comp Physiol 21:191–198

    Article  CAS  Google Scholar 

  • Fabre J, Rudhardt M, Blanchard P, Regamey C (1976) Persistence of sisomicin and gentamicin in renal cortex and medulla compared with other organs and serum of rats. Kidney Int 10:444–449

    Article  CAS  Google Scholar 

  • Fainstein V, Bodey G, McCredie K, Keating M, Estey E, Bolivar R, Elting L (1983) Coagulation abnormalities induced by β-lactam antibiotics in cancer patients. J Infect Dis 148:745–750

    Article  CAS  Google Scholar 

  • Fanning WL, Gump DW, Sofferman RA (1977) Side effects of minocycline: a double-blind study. Antimicrob Agents Chemother 11:712–717

    Article  CAS  Google Scholar 

  • Faulkner R, Fernandez P, Lawrence G, Sia L, Falkowski A, Weiss A, Yacobi A, Silber B (1988) Absolute bioavailability of cefixime in man. J Clin Pharmacol 28:700–706

    Article  CAS  Google Scholar 

  • Finch R, Schürmann D, Collins O, Kubin R, McGivern J, Bobbaers H, Izquierdo J, Nikolaides P, Ogundare F, Raz R (2002) Randomized controlled trial of sequential intravenous (iv) and oral moxifloxacin compared with sequential iv and oral co-amoxiclav with or without clarithromycin in patients with community-acquired pneumonia requiring initial parenteral treatment. Antimicrob Agents Chemother 46:1746–1754

    Article  CAS  Google Scholar 

  • Florek J, Caillard R, Kleitz F (2017) Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale 9:15252–15277

    Article  CAS  Google Scholar 

  • Foster TS, Raehl CL, Wilson HD (1980) Disulfiram-like reaction associated with a parenteral cephalosporin. Am J Health Syst Pharm 37:858–859

    Article  CAS  Google Scholar 

  • François B, Russell RJ, Murray JB, Aboul-ela F, Masquida B, Vicens Q, Westhof E (2005) Crystal structures of complexes between aminoglycosides and decoding a site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 33:5677–5690

    Article  Google Scholar 

  • Fraser TG, Stosor V, Wang Q, Allen A, Zembower TR (2005) Vancomycin and home health care. Emerg Infect Dis 11:1558

    Article  Google Scholar 

  • Fung AT, Hudson B, Billson FA (2011) Chloramphenicol–not so innocuous: a case of optic neuritis. BMJ Case Rep 2011:bcr1020103434

    Google Scholar 

  • Fuoco D (2012) Classification framework and chemical biology of tetracycline-structure-based drugs. Antibiotics 1:1

    Article  CAS  Google Scholar 

  • García-Carbonell MC, Granero L, Torres-Molina F, Aristorena J-C, Chesa-Jimenez J, Pla-Delfina J, Peris-Ribera J (1993) Nonlinear pharmacokinetics of cefadroxil in the rat. Drug Metab Dispos 21:215–217

    Google Scholar 

  • Geeaci J, Heilman F, Nichols D, Wellman W (1958) Antibiotic therapy of bacterial endocarditis. VII. Vancomycin for acute micrococcal endocarditis. Preliminary report, proceedings of staff meetings of the Mayo Clinic, pp 172–181

    Google Scholar 

  • Gips M, Soback S (1996) Norfloxacin nicotinate pharmacokinetics in unwearied and weaned calves. J Vet Pharmacol Ther 19:130–134

    Article  CAS  Google Scholar 

  • Green C, Cameron H, Julian G (1975) Recovery of polysome function of T4-infected Escherichia coli after brief treatment with chloramphenicol and rifampin. Antimicrob Agents Chemother 7:549–554

    Article  CAS  Google Scholar 

  • Griffith R, Black H (1970) Cephalexin. Med Clin North Am 54:1229–1244

    Article  CAS  Google Scholar 

  • Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K (1999) Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem Mater 11:1110–1119

    Article  CAS  Google Scholar 

  • Hebert AA, Sigman ES, Levy ML (1991) Serum sickness—like reactions from cefaclor in children. J Am Acad Dermatol 25:805–808

    Article  CAS  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–652

    Article  CAS  Google Scholar 

  • Hens B, Brouwers J, Anneveld B, Corsetti M, Symillides M, Vertzoni M, Reppas C, Turner DB, Augustijns P (2014) Gastrointestinal transfer: in vivo evaluation and implementation in in vitro and in silico predictive tools. Eur J Pharm Sci 63:233–242

    Article  CAS  Google Scholar 

  • Hey H, Jørgensen F, Sørensen K, Hasselbalch H, Wamberg T (1982) Oesophageal transit of six commonly used tablets and capsules. Br Med J (Clin Res Ed) 285:1717–1719

    Article  CAS  Google Scholar 

  • Hinshaw H, Feldman W (1945) Streptomycin in treatment of clinical tuberculosis: a preliminary report, proceedings of staff meetings of the Mayo Clinic, pp 313–318

    Google Scholar 

  • Hopefl AW (1985) Aztreonam—an overview. Drug Intell Clin Pharm 19:171–175

    Article  CAS  Google Scholar 

  • Hou C-D, Wang J-X, Le Y, Zou H-K, Zhao H (2012) Preparation of azithromycin nanosuspensions by reactive precipitation method. Drug Dev Ind Pharm 38:848–854

    Article  CAS  Google Scholar 

  • Humbert G, Leroy A, Fillastre J, Oksenhendler G (1978) Pharmacokinetics of netilmicin in the presence of normal or impaired renal function. Antimicrob Agents Chemother 14:40–44

    Article  CAS  Google Scholar 

  • Humbert G, Spyker DA, Fillastre J, Leroy A (1979) Pharmacokinetics of amoxicillin: dosage nomogram for patients with impaired renal function. Antimicrob Agents Chemother 15:28–33

    Article  CAS  Google Scholar 

  • Ingalls CS, Freimer EH (1992) Detection of antibiotic-induced platelet dysfunction in whole blood using flow cytometry. J Antimicrob Chemother 29:313–321

    Article  CAS  Google Scholar 

  • Inman W, Rawson N (1983) Erythromycin estolate and jaundice. Br Med J (Clin Res Ed) 286:1954–1955

    Article  CAS  Google Scholar 

  • Iseman MD, Cohn DL, Sbarbaro JA (1993) Directly observed treatment of tuberculosis—we can’t afford not to try it. N Engl J Med 328:576–578

    Article  CAS  Google Scholar 

  • Josefsson K, Bergan T (1982) Pharmacokinetics of phenoxymethylpenicillin in volunteers. Chemotherapy 28:241–246

    Article  CAS  Google Scholar 

  • Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Müller M (2001) Impaired target site penetration of β-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29:385–391

    Article  CAS  Google Scholar 

  • Kaplan SA, Weinfeld RE, Abruzzo CW, Lewis M (1972) Pharmacokinetic profile of sulfisoxazole following intravenous, intramuscular, and oral administration to man. J Pharm Sci 61:773–778

    Article  CAS  Google Scholar 

  • Karmody CS, Weinstein L (1977) Reversible sensorineural hearing loss with intravenous erythromycin lactobionate. Ann Otol Rhinol Laryngol 86:9–11

    Article  CAS  Google Scholar 

  • Katapadi K, Kostandy G, Katapadi M, Hussain K, Schifter D (1997) A review of erythromycin-induced malignant tachyarrhythmia—torsade de pointes: a case report. Angiology 48:821–826

    Article  CAS  Google Scholar 

  • Keating GM, Perry CM (2005) Ertapenem. Drugs 65:2151–2178

    Article  CAS  Google Scholar 

  • Kelkar PS, Li JT-C (2001) Cephalosporin allergy. N Engl J Med 345:804–809

    Article  CAS  Google Scholar 

  • Kerr RO, Cardamone J, Dalmasso AP, Kaplan ME (1972) Two mechanisms of erythrocyte destruction in penicillin-induced hemolytic anemia. N Engl J Med 287:1322–1325

    Article  CAS  Google Scholar 

  • Kip AE, Schellens JH, Beijnen JH, Dorlo TP (2018) Clinical pharmacokinetics of systemically administered antileishmanial drugs. Clin Pharmacokinet 57:151–176

    Article  CAS  Google Scholar 

  • Klein JO, Finland M (1963) Nafcillin: antibacterial action in vitro and absorption and excretion in Normal young men. Am J Med Sci 246:10–26

    Article  CAS  Google Scholar 

  • Kolkman W, Groeneveld J, Baur H, Verschuur H (2002) Ototoxicity induced by clarithromycin. Ned Tijdschr Geneeskd 146:1743–1745

    CAS  Google Scholar 

  • Kuhlmann J, Dalhoff A, Zeiler H-J (2012) Quinolone antibacterials, vol 127. Springer Science & Business Media, New York

    Google Scholar 

  • Leclercq R, Courvalin P (2002) Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother 46:2727–2734

    Article  CAS  Google Scholar 

  • Libke RD, Clarke JT, Ralph ED, Luthy RP, Kirby WM (1975) Ticarcillin vs carbenicillin: clinical pharmacokinetics. Clin Pharmacol Therapeut 17:441–446

    Article  CAS  Google Scholar 

  • Lin C-H, Chen C-H, Lin Z-C, Fang J-Y (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  Google Scholar 

  • Lipsky BA, Baker CA, McDonald LL, Suzuki NT (1999) Improving the appropriateness of vancomycin use by sequential interventions. Am J Infect Control 27:84–90

    Article  CAS  Google Scholar 

  • Lochhead J, Elston J (2003) Doxycycline induced intracranial hypertension. BMJ 326:641–642

    Article  CAS  Google Scholar 

  • Lode H, Elvers A, Koeppe P, Borner K (1984) Comparative pharmacokinetics of apalcillin and piperacillin. Antimicrob Agents Chemother 25:105–108

    Article  CAS  Google Scholar 

  • Longo G, Valenti C, Gandini G, Ferrara L, Bertesi M, Emilia G (1997) Azithromycin-induced intrahepatic cholestasis. Am J Med 102:217

    CAS  Google Scholar 

  • Loos U, Musch E, Jensen J, Mikus G, Schwabe H, Eichelbaum M (1985) Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr 63:1205–1211

    Article  CAS  Google Scholar 

  • Low CL, Gopalakrishna K, Lye WC (2000) Pharmacokinetics of once daily intraperitoneal cefazolin in continuous ambulatory peritoneal dialysis patients. J Am Soc Nephrol 11:1117–1121

    CAS  Google Scholar 

  • Lynch SR, Puglisi JD (2001) Structural origins of aminoglycoside specificity for prokaryotic ribosomes1. J Mol Biol 306:1037–1058

    Article  CAS  Google Scholar 

  • MacGregor RR, Graziani AL (1997) Oral administration of antibiotics: a rational alternative to the parenteral route. Clin Infect Dis 24:457–467

    Article  CAS  Google Scholar 

  • Madison JF (1963) Tetracycline pigmentation of teeth. Arch Dermatol 88:58–59

    Article  CAS  Google Scholar 

  • Manyan DR, Arimura GK, Yunis AA (1972) Chloramphenicol-induced erythroid suppression and bone marrow ferrochelatase activity in dogs. J Lab Clin Med 79:137–144

    CAS  Google Scholar 

  • Maraqa NF, Gomez MM, Rathore MH, Alvarez AM (2002) Higher occurrence of hepatotoxicity and rash in patients treated with oxacillin, compared with those treated with nafcillin and other commonly used antimicrobials. Clin Infect Dis 34:50–54

    Article  CAS  Google Scholar 

  • Marshall WF, Blair JE (1999) The cephalosporins, Mayo Clinic proceedings. Elsevier, Amsterdam, pp 187–195

    Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    Article  CAS  Google Scholar 

  • Mccaffrey RP, Halsted CH, Wahab MFA, Robertson RP (1971) Chloramphenicol-induced hemolysis in Caucasian glucose-6-phosphate dehydrogenase deficiency. Ann Intern Med 74:722–726

    Article  CAS  Google Scholar 

  • Meyers B, Hirschman S, Strougo L, Srulevitch E (1980) Comparative study of piperacillin, ticarcillin, and carbenicillin pharmacokinetics. Antimicrob Agents Chemother 17:608–611

    Article  CAS  Google Scholar 

  • Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL (2011) Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy 31:408–423

    Article  CAS  Google Scholar 

  • Mitchell JR, Zimmerman HJ, Ishak KG, Thorgeirsson UP, Timbrell JA, Snodgrass WR, Nelson SD (1976) Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann Intern Med 84:181–192

    Article  CAS  Google Scholar 

  • Mizuno N, Nishikata M, Morita E, Miyake K (1986) Gastrointestinal absorption of sulfaguanidine in neonatal and adult rats. Aust J Pharm 9:787–792

    CAS  Google Scholar 

  • Moffitt JM, Cooley RO, Olsen NH, Hefferren JJ (1974) Prediction of tetracycline-induced tooth discoloration. J Am Dent Assoc 88:547–552

    Article  CAS  Google Scholar 

  • Mori H, Takahashi K, Mizutani T (2007) Interaction between valproic acid and carbapenem antibiotics. Drug Metab Rev 39:647–657

    Article  CAS  Google Scholar 

  • Musser J, Anderson K (2001) Bioavailability and disposition of sodium and procaine penicillin G (benzylpenicillin) administered orally with milk to calves. J Vet Pharmacol Ther 24:161–169

    Article  CAS  Google Scholar 

  • Myers AL, Gaedigk A, Dai H, James LP, Jones BL, Neville KA (2012) Defining risk factors for red man syndrome in children and adults. Pediatr Infect Dis J 31:464

    Article  Google Scholar 

  • Namba S, Igari T, Nishiyama K, Hashimoto K, Takemura T, Kimura K (1991) A case of pyrazinamide-associated myoglobinuric renal failure. Jpn J Med 30:468–472

    Article  CAS  Google Scholar 

  • Nathwani D, Wood MJ (1993) Penicillins. Drugs 45:866–894

    Article  CAS  Google Scholar 

  • Nauta E, Mattie H (1975) Pharmacokinetics of flucloxacillin and cloxacillin in healthy subjects and patients on chronic intermittent haemodialysis. Br J Clin Pharmacol 2:111–121

    Article  CAS  Google Scholar 

  • Nightingale CH, Greene DS, Quintiliani R (1975) Pharmacokinetics and clinical use of cephalosporin antibiotics. J Pharm Sci 64:1899–1927

    Article  CAS  Google Scholar 

  • Nordström L, Ringbert H, Cronberg S, Tjernström O, Walder M (1990) Does administration of an aminoglycoside in a single daily dose affect its efficacy and toxicity? J Antimicrob Chemother 25:159–173

    Article  Google Scholar 

  • Norrby SR (1987) Side effects of cephalosporins. Drugs 34:105–120

    Article  Google Scholar 

  • Owens RC Jr, Ambrose PG (2005) Antimicrobial safety: focus on fluoroquinolones. Clin Infect Dis 41:S144–S157

    Article  CAS  Google Scholar 

  • Pai MP, Cottrell ML, Kashuba AD, Bertino JS (2014) Pharmacokinetics and pharmacodynamics of anti-infective agents, Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Elsevier, Amsterdam

    Google Scholar 

  • Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Microbiol 25:487–562

    Article  CAS  Google Scholar 

  • Pillai S, Eliopoulos G, Moellering R (2010) Principles of anti-infective therapy. Principles and practice of infectious diseases, 7th edn. Churchill Livingston Elsevier, Philadelphia, PA, pp 267–278

    Google Scholar 

  • Piscitelli S, Danziger L, Rodvold K (1992) Clarithromycin and azithromycin: new macrolide antibiotics. Clin Pharm 11:137–152

    CAS  Google Scholar 

  • Pittinger C, Adamson R (1972) Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol 12:169–184

    Article  CAS  Google Scholar 

  • Pouretedal HR (2014) Preparation and characterization of azithromycin nanodrug using solvent/antisolvent method. Int Nano Lett 4:103

    Article  CAS  Google Scholar 

  • Price EJ, Venables PJ (1995) Drug-induced lupus. Drug Saf 12:283–290

    Article  CAS  Google Scholar 

  • Radwanski E, Batra V, Cayen M, Korduba C, Cutler D, Affrime M, Nomeir A, Lin C (1997) Pharmacokinetics of isepamicin following a single administration by intravenous infusion or intramuscular injections. Antimicrob Agents Chemother 41:1794–1796

    Article  CAS  Google Scholar 

  • Rando RR (2001) Aminoglycoside binding to human and bacterial A-site rRNA decoding region constructs. Bioorg Med Chem 9:2601–2608

    Article  Google Scholar 

  • Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM (2004) Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med 351:1089–1096

    Article  CAS  Google Scholar 

  • Resistant BLPM (2007) Saponins from Eugenia jambolana with antibacterial activity against beta-lactamase producing methicillin resistant Staphylococcus aureus. Res J Med Pianti 1:1–6

    Google Scholar 

  • Rich ML, Ritterhoff RJ, Hoffmann RJ (1950) A fatal case of aplastic anemia following chloramphenicol (chloromycetin) therapy. Ann Intern Med 33:1459–1467

    Article  CAS  Google Scholar 

  • Romano A, Torres M, Namour F, Mayorga C, Artesani M, Venuti A, Guéant J, Blanca M (2002) Immediate hypersensitivity to cephalosporins. Allergy 57:52–57

    Article  Google Scholar 

  • Ruoff JW, Sams R (1985) Pharmacokinetics and bioavailability of cephalothin in horse mares. Am J Vet Res 46:2085–2090

    CAS  Google Scholar 

  • Saivin S, Houin G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet 15:355–366

    Article  CAS  Google Scholar 

  • Sams R, Ruoff JW (1985) Pharmacokinetics and bioavailability of cefazolin in horses. Am J Vet Res 46:348–352

    CAS  Google Scholar 

  • Sandoval RM, Reilly JP, Running W, Campos SB, Santos JR, Phillips CL, Molitoris BA (2006) A non-nephrotoxic gentamicin congener that retains antimicrobial efficacy. J Am Soc Nephrol 17:2697–2705

    Article  CAS  Google Scholar 

  • SanFilippo JA (1976) Infantile hypertrophic pyloric stenosis related to ingestion of erythromycine estolate: a report of five cases. J Pediatr Surg 11:177–180

    Article  CAS  Google Scholar 

  • Sanwikarja S, Kauffmann R, Serlie J (1989) Tubulointerstitial nephritis associated with pyrazinamide. Neth J Med 34:40–46

    CAS  Google Scholar 

  • Sawant KK, Patel MH, Patel K (2016) Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro–in vivo evaluations. Drug Dev Ind Pharm 42:758–768

    Article  CAS  Google Scholar 

  • Schentag JJ, Ballow CH (1991) Tissue-directed pharmacokinetics. Am J Med 91:S5–S11

    Article  Google Scholar 

  • Schultz JC, Adamson JS Jr, Workman WW, Norman TD (1963) Fatal liver disease after intravenous administration of tetracycline in high dosage. N Engl J Med 269:999–1004

    Article  CAS  Google Scholar 

  • Segal JL, Brunnemann SR, Gray DR (1988) Gentamicin bioavailability and single-dose pharmacokinetics in spinal cord injury. Drug Intell Clin Pharm 22:461–465

    Article  CAS  Google Scholar 

  • Shaffer D, Singer S, Korvick J, Honig P (2002) Concomitant risk factors in reports of torsades de pointes associated with macrolide use: review of the United States Food and Drug Administration adverse event reporting system. Clin Infect Dis 35:197–200

    Article  Google Scholar 

  • Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK (2012) Nano-technology for targeted drug delivery to combat antibiotic resistance. Taylor & Francis, London

    Book  Google Scholar 

  • Sharma M, Gupta N, Gupta S (2016) Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv 6:76621–76631

    Article  CAS  Google Scholar 

  • Shearer M, Bechtold H, Andrassy K, Koderisch J, McCarthy P, Trenk D, Jähnchen E, Ritz E (1988) Mechanism of cephalosporin-induced hypoprothrombinemia: relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J Clin Pharmacol 28:88–95

    Article  CAS  Google Scholar 

  • Shils ME (1963) Renal disease and the metabolic effects of tetracycline. Ann Intern Med 58:389–408

    Article  CAS  Google Scholar 

  • Shively ML, Thompson DC (1995) Oral bioavailability of vancomycin solid-state emulsions. Int J Pharm 117:119–122

    Article  CAS  Google Scholar 

  • Shyu W, Shah V, Campbell D, Wilber R, Pittman K, Barbhaiya R (1992) Oral absolute bioavailability and intravenous dose-proportionality of Cefprozil in humans. J Clin Pharmacol 32:798–803

    Article  CAS  Google Scholar 

  • Siddiqui K, Waris A, Akber H, Munir K, Mir M, Khan MW, Aman W (2017) Physicochemical modifications and Nano particulate strategies for improved bioavailability of poorly water soluble drugs. Pharmaceut Nanotechnol 5:276–284

    CAS  Google Scholar 

  • Signs S, Tan J, Salstrom S, File T (1992) Pharmacokinetics of imipenem in serum and skin window fluid in healthy adults after intramuscular or intravenous administration. Antimicrob Agents Chemother 36:1400–1403

    Article  CAS  Google Scholar 

  • Singh M, Varshneya C, Telang R, Srivastava A (2005) Alteration of pharmacokinetics of oxytetracycline following oral administration of Piper longum in hens. J Vet Sci 6:197–200

    Article  CAS  Google Scholar 

  • Smith K, Leyden JJ (2005) Safety of doxycycline and minocycline: a systematic review. Clin Ther 27:1329–1342

    Article  CAS  Google Scholar 

  • Smith CL, Powell K (2000) Review of the sulfonamides and trimethoprim. Pediatr Rev 21:368–371

    Article  CAS  Google Scholar 

  • Smith AL, Weber A (1983) Pharmacology of chloramphenicol. Pediatr Clin N Am 30:209–236

    Article  CAS  Google Scholar 

  • Somogyi AA, Bochner F, Hetzel D, Williams DB (1995) Evaluation of the intestinal absorption of erythromycin in man: absolute bioavailability and comparison with enteric coated erythromycin. Pharm Res 12:149–154

    Article  CAS  Google Scholar 

  • Sörgel F, Kinzig M (1993) Pharmacokinetics of gyrase inhibitors, part 1: basic chemistry and gastrointestinal disposition. Am J Med 94:44S–55S

    Google Scholar 

  • Spyker DA, Rugloski RJ, Vann RL, O’Brien WM (1977) Pharmacokinetics of amoxicillin: dose dependence after intravenous, oral, and intramuscular administration. Antimicrob Agents Chemother 11:132–141

    Article  CAS  Google Scholar 

  • Squibb B-M, Sons L Azactam®(aztreonam for injection, USP). Kidney 4:23

    Google Scholar 

  • Staib AH, Beermann D, Harder S, Fuhr U, Liermann D (1989) Absorption differences of ciprofloxacin along the human gastrointestinal tract determined using a remote-control drug delivery device (HF-capsule). Am J Med 87:S66–S69

    Article  Google Scholar 

  • Suarez CR, Ow EP (1992) Chloramphenicol toxicity associated with severe cardiac dysfunction. Pediatr Cardiol 13:48–51

    CAS  Google Scholar 

  • Suber RL, Lee C, Torosian G, Edds GT (1981) Pharmacokinetics of sulfisoxazole compared in humans and two monogastric animal species. J Pharm Sci 70:981–984

    Article  CAS  Google Scholar 

  • Sutherland JM (1959) Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. AMA J Dis Child 97:761–767

    CAS  Google Scholar 

  • Swabb EA, Sugerman A, Stern M (1983) Oral bioavailability of the monobactam aztreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother 23:548–550

    Article  CAS  Google Scholar 

  • Swartz MN (1997) Use of antimicrobial agents and drug resistance. N Engl J Med 337(7):491–492

    Article  CAS  Google Scholar 

  • Sykes R, Bonner D (1985) Discovery and development of the monobactams. Rev Infect Dis 7:S579–S593

    Article  CAS  Google Scholar 

  • Tod M, Padoin C, Petitjean O (2000) Clinical pharmacokinetics and pharmacodynamics of isepamicin. Clin Pharmacokinet 38:205–223

    Article  CAS  Google Scholar 

  • Tomé AM, Filipe A (2011) Quinolones. Drug Saf 34:465–488

    Article  Google Scholar 

  • Turner M, Aziz SR (2002) Management of the pregnant oral and maxillofacial surgery patient. J Oral Maxillofac Surg 60:1479–1488

    Article  Google Scholar 

  • Uppal R, Verma S, Verma V, Garg S (1997) Comparative pharmacokinetics of amikacin following a single intramuscular or subcutaneous administration in goats (Capra hircus). Vet Res 28:565–570

    CAS  Google Scholar 

  • Van Bambeke F, Barcia-Macay M, Lemaire S, Tulkens PM (2006) Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Develop 9:218

    Google Scholar 

  • Verbist L, Tjandramaga T, Mullie A, Van Hecken A, Verbesselt R, De Schepper P (1982) Comparative study of in vitro antimicrobial activity and human pharmacokinetics of Dibekacin and tobramycin. Acta Clin Belg 37:148–157

    Article  CAS  Google Scholar 

  • Vial T, Biour M, Descotes J, Trepo C (1997) Antibiotic-associated hepatitis: update from 1990. Ann Pharmacother 31:204–220

    Article  CAS  Google Scholar 

  • Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108:835–840

    Article  CAS  Google Scholar 

  • Von Drygalski A, Curtis BR, Bougie DW, McFarland JG, Ahl S, Limbu I, Baker KR, Aster RH (2007) Vancomycin-induced immune thrombocytopenia. N Engl J Med 356:904–910

    Article  Google Scholar 

  • Wallace RJ Jr, Brown BA, Griffith DE (1993) Drug intolerance to high-dose clarithromycin among elderly patients. Diagn Microbiol Infect Dis 16:215–221

    Article  Google Scholar 

  • Weber WW, Hein DW (1979) Clinical pharmacokinetics of isoniazid. Clin Pharmacokinet 4:401–422

    Article  CAS  Google Scholar 

  • Werner JC, Whitman V, Schuler HG, Fripp RR, Rannels AM, Kasales CJ, LaNoue KF (1985) Acute myocardial effects of chloramphenicol in newborn pigs: a possible insight into the gray baby syndrome. J Infect Dis 152:344–350

    Article  CAS  Google Scholar 

  • Williams PE, Harding SM (1984) The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J Antimicrob Chemother 13:191–196

    Article  CAS  Google Scholar 

  • Winckler K (1981) Tetracycline ulcers of the oesophagus. Endoscopy, histology and roentgenology in two cases, and review of the literature. Endoscopy 13:225–228

    Article  CAS  Google Scholar 

  • Wise EM, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci 54:75–81

    Article  CAS  Google Scholar 

  • Wolkenstein P, Charue D, Laurent P, Revuz J, Roujeau J-C, Bagot M (1995) Metabolic predisposition to cutaneous adverse drug reactions: role in toxic epidermal necrolysis caused by sulfonamides and anticonvulsants. Arch Dermatol 131:544–551

    Article  CAS  Google Scholar 

  • Wood M, Farrell W, Kattan S, Williams J (1975) Activity of minocycline and tetracycline against respiratory pathogens related to blood levels. J Antimicrob Chemother 1:323–331

    Article  CAS  Google Scholar 

  • Woolf D (1965) Chloramphenicol blindness. BMJ Publishing Group, London

    Google Scholar 

  • Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281:28–37

    Article  CAS  Google Scholar 

  • Yates AB (2008) Management of patients with a history of allergy to beta-lactam antibiotics. Am J Med 121:572–576

    Article  CAS  Google Scholar 

  • Yunis A (1973) Chloramphenicol induced bone marrow suppression, Seminars in hematology. WB Saunders Ltd, Philadelphia, pp 225–234

    Google Scholar 

  • Zhu M, Burman WJ, Jaresko GS, Berning SE, Jelliffe RW, Peloquin CA (2001) Population pharmacokinetics of intravenous and intramuscular streptomycin in patients with tuberculosis. Pharmacotherapy 21:1037–1045

    Article  CAS  Google Scholar 

  • Zierski M, Bek E (1980) Side-effects of drug regimens used in short-course chemotherapy for pulmonary tuberculosis. A controlled clinical study. Tubercle 61:41–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullah, I., Ali, E., Fakhar-ud-Din (2020). Bioavailability of Antibiotics and Their Toxicity. In: Hashmi, M. (eds) Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-40422-2_10

Download citation

Publish with us

Policies and ethics