Skip to main content

Climate Change and Great Salt Lake

  • Chapter
  • First Online:
Great Salt Lake Biology

Abstract

Terminal lakes are highly susceptible to climate change impacts since water that enters through precipitation, runoff, and groundwater must be balanced with water that leaves through evaporation. A change in this equation can lead to a decline in elevation, which can be tragic for the ecosystem, particularly if the closed basin is shallow. Great Salt Lake faces many threats that will impact the volume of water in the depression of the Bonneville Basin where it resides. If the lake’s level declines, salinity increases, and wetlands are altered. Salinity is a driver of microbial diversity and, as this foundation of the ecosystem is altered, so will be the rest of the food web, affecting large numbers of avian migrators along the Pacific and Central fly-ways. Human population growth and water diversions for agriculture have put a strain on Great Salt Lake, resulting in a terminal lake whose trajectory is downward in surface area. How might anthropogenic climate change impact this scenario? Alterations in temperature can influence the timing of snowmelt and change evapotranspiration. As temperatures increase and droughts persist, climate change will amplify the decline in lake elevation, creating more dust from the exposed lakebed. Dust blowing into inhabited valleys will worsen air quality with particulates and may be laden with the pollutants collected by the lake. Early melting of the snowpack in the Wasatch Mountains due to higher temperatures would be further impacted as airborne dust from the dry shorelines is deposited during storms and can reduce the albedo of snow, altering groundwater recharge of the watershed. The current status of Great Salt Lake, with no water rights of its own and increasing pressures for water use upstream, does not bode well for the survival of this critical ecosystem given climate change predictions for the southwestern United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour M, Javid AH, Mirbagheri SA, Givi FA, Moghimi P (2012) Investigation of lake drying attributed to climate change. Int J Environ Sci Technol 9(2):257–266

    Google Scholar 

  • Adams TC (1964) Salt migration to the northwest body of Great Salt Lake, Utah. Science 143(3610):1027–1029

    CAS  PubMed  Google Scholar 

  • Adams WJ, DeForest DK, Tear LM, Payne K, Brix KV (2015) Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies. Environ Monit Assess 187(3):118

    PubMed  Google Scholar 

  • Aldrich TW, Paul DS (2002) Avian ecology of Great Salt Lake. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Utah Department of Natural Resources, Salt Lake City, UT, p 584

    Google Scholar 

  • Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK (2015) Temporal study of the microbial diversity of the north arm of Great Salt Lake. Microorganisms 3:310–326

    PubMed  PubMed Central  Google Scholar 

  • Anderson RB (2012) Quantity and quality of groundwater discharge in a hyper-saline lake environment, Great Salt Lake, Utah, USA. Thesis. The University of Utah, Salt Lake City, UT

    Google Scholar 

  • Arnow T (1984) Water-level and water-quality changes in Great Salt Lake, Utah, 1847-1983, vol 913. US Department of the Interior Geological Survey, Reston, VA

    Google Scholar 

  • Arnow T, Stephens DW (1990) Hydrologic characteristics of the Great Salt Lake, Utah, 1847-1986 (No. 2332). US Government Printing Office, Washington, DC

    Google Scholar 

  • Atwood G, Wambeam TJ, Anderson NJ (2016) The present as a key to the past: Paleoshoreline correlation insights from Great Salt Lake. In: Oviatt CG, Shroder JF (eds) Lake Bonneville a scientific update, 1st edn. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  • Barnes BD, Wurtsbaugh WA (2015) The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: a microcosm experiment. Can J Fish Aquat Sci 72(6):807–817

    CAS  Google Scholar 

  • Baxter BK (2018) Great Salt Lake microbiology: a historical perspective. Int Microbiol:1–17

    Google Scholar 

  • Baxter BK, Litchfield CD, Sowers K, Griffith JD, DasSarma PA, DasSarma S (2005) Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Cellular origin, life in extreme habitats and astrobiology, 9th edn. Springer, Dordrecht, pp 9–25

    Google Scholar 

  • Bedford D (2009) The Great Salt Lake America’s Aral Sea? Environ Sci Policy Sustain Devel 51:8–21

    Google Scholar 

  • Behrens P (1980) Industrial processing of Great Salt Lake brines by Great Salt Lake Minerals and Chemicals Corporation. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological Survey, Salt Lake City, UT, pp 223–228

    Google Scholar 

  • Beisner K, Naftz DL, Johnson WP, Diaz X (2009) Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah. Sci Total Environ 407(19):5263–5273

    CAS  PubMed  Google Scholar 

  • Bellrose FC (1980) Ducks, geese & swans of North America. Stackpole Books, Harrisburg, PA

    Google Scholar 

  • Belovsky GE, Perschon WC (2019) A management case study for a new commercial fishery: brine shrimp harvesting in Great Salt Lake, Utah, USA. Ecol Appl 29(3):e01864. https://doi.org/10.1002/eap.1864

    Article  PubMed  Google Scholar 

  • Belovsky GE, Stephens D, Perschon C, Birdsey P, Paul D, Naftz D, Baskin R, Larson C, Mellison C, Luft J, Mosley R (2011) The Great Salt Lake ecosystem: long term data and a structural equation approach. Ecosphere 2:1–40. https://doi.org/10.1890/ES10-00091.1

    Google Scholar 

  • Bingham CP (1980) Solar production of potash from the brines of the Bonneville Salt Flats. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological Survey, Salt Lake City, UT, pp 229–242

    Google Scholar 

  • Bioeconomics, Inc. (2012) Economic significance of the Great Salt Lake to the State of Utah. Missoula, MT. https://documents.deq.utah.gov/water-quality/standards-technical-services/great-salt-lake-advisory-council/Activities/DWQ-2012-006864.pdf. Accessed 19 Aug 2019

  • Bowen GJ, Nielson KE, Eglinton TI (2019) Multi-substrate radiocarbon data constrain detrital and reservoir effects in Holocene sediments of the Great Salt Lake, Utah. Radiocarbon:1–22

    Google Scholar 

  • Boyd ES, Yu R-Q, Barkay T, Hamilton TL, Baxter BK, Naftz DL, Marvin-DiPasquale M (2017) Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.12.157

  • Cahill TA, Gill TE, Reid JS, Gearhart EA, Gillette DA (1996) Saltating particles, playa crusts and dust aerosols at Owens (dry) Lake, California. Earth Surf Process Landf 21(7):621–639

    CAS  Google Scholar 

  • Campbell HE, Johnson RM, Larson EH (2004) Prices, devices, people, or rules: the relative effectiveness of policy instruments in water conservation 1. Rev Policy Res 21(5):637–662

    Google Scholar 

  • Cannon JS, Cannon MA (2002) The Southern Pacific Railroad trestle - past and present. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Special Publication of the Department of Natural Resources, Salt Lake City, UT, pp 283–294

    Google Scholar 

  • Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci USA 107(50):21271–21276

    CAS  PubMed  Google Scholar 

  • Cohenour RE, Thompson KC (1966) Geologic setting of Great Salt Lake. Utah Geological and Mineralogical Survey, Salt Lake City, UT

    Google Scholar 

  • Coltrain JB, Leavitt SW (2002) Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake Basin. Am Antiq 673:453–485

    Google Scholar 

  • Conover MR, Bell ME (2020) Importance of Great Salt Lake to pelagic birds: eared grebes, phalaropes, gulls, ducks, and white pelicans. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Conover MR, Vest JL (2009) Selenium and mercury concentrations in California gulls breeding on the Great Salt Lake, Utah, USA. Environ Toxicol Chem 28(2):324–329

    CAS  PubMed  Google Scholar 

  • Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv 1(1):e1400082

    PubMed  PubMed Central  Google Scholar 

  • Crosman ET, Horel JD (2009) MODIS-derived surface temperature of the Great Salt Lake. Remote Sens Environ 113(1):73–81

    Google Scholar 

  • Crosman ET, Horel JD (2016) Winter lake breezes near the Great Salt Lake. Bound Layer Meteorol 159(2):439–464

    Google Scholar 

  • Cuch FS (2000) History of Utah’s American Indians. University Press of Colorado, Louisville, CO

    Google Scholar 

  • De Martonne E (1927) Regions of interior-basin drainage. Geogr Rev 17(3):397–414

    Google Scholar 

  • Dicataldo G, Hayes DF, Miller TG, Scanlan L (2010) Selenium speciation and distribution in a wetland system of the Great Salt Lake, Utah. Environ Eng Sci 27(9):777–788

    CAS  Google Scholar 

  • Diffenbaugh NS, Giorgi F, Pal JS (2008) Climate change hotspots in the United States. Geophys Res Lett 35(16)

    Google Scholar 

  • Dominguez F, Cañon J, Valdes J (2010) IPCC-AR4 climate simulations for the Southwestern US: the importance of future ENSO projections. Clim Change 99(3–4):499–514

    Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 6(5):508

    Google Scholar 

  • dos Santos CA, Neale CM, Rao TV, da Silva BB (2011) Trends in indices for extremes in daily temperature and precipitation over Utah, USA. Int J Climatol 31(12):1813–1822

    Google Scholar 

  • Ewert EC (2014) The coming challenge: population growth and water decline. In: Crimmel H (ed) Desert water: the future of Utah’s water resources. University of Utah Press, Salt Lake City, UT, pp 13–28

    Google Scholar 

  • Ficklin DL, Stewart IT, Maurer EP (2013) Effects of projected climate change on the hydrology in the Mono Lake Basin, California. Clim Change 116:111–131

    Google Scholar 

  • Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Ravi S, Reheis MC, Reynolds RL (2010) The ecology of dust. Front Ecol Environ 8(8):423–430

    Google Scholar 

  • Frank MG, Conover MR (2019) Threatened habitat at Great Salt Lake: importance of shallow-water and brackish habitats to Wilson’s and Red-necked phalaropes. The Condor Ornithol Appl 21(2):duz005. https://doi.org/10.1093/condor/duz005

    Article  Google Scholar 

  • Frémont JC (1845) Report of the exploring expedition to the Rocky Mountains in the year 1842 and to Oregon and North California in the years 1843-44: Printed by order of the Senate of the United States, vol 174. Gales & Seaton, Washington, DC

    Google Scholar 

  • Friends of Great Salt Lake (2018). https://www.fogsl.org/programs/great-salt-lake-issues-forum. Accessed 11 Sept 2019

  • Fritz SC (1996) Paleolimnological records of climatic change in North America. Limnol Oceanogr 41(5):882–889

    CAS  Google Scholar 

  • Garfin G, Jardine A, Merideth R, Black M, LeRoy S (2014) Assessment of climate change in the Southwest United States, National Climate Assessment Regional Technical Input Report Series. Island Press, Washington, DC

    Google Scholar 

  • Gilbert GK (1890) Lake Bonneville. U. S. Geological Survey Monograph 1, 438 p

    Google Scholar 

  • Gill TE, Gillette DA, Niemeyer T, Winn RT (2002) Elemental geochemistry of wind-erodible playa sediments, Owens Lake, California. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 189(1-4):209–213

    CAS  Google Scholar 

  • Gillies RR, Wang SY, Booth MR (2012) Observational and synoptic analyses of the winter precipitation regime change over Utah. J Clim 25(13):4679–4698

    Google Scholar 

  • Godsey HS, Currey DR, Chan MA (2005) New evidence for an extended occupation of the Provo shoreline and implications for regional climate change, Pleistocene Lake Bonneville, Utah, USA. Quat Res 63(2):212–223

    Google Scholar 

  • Goodman MM, Carling GT, Fernandez DP, Rey KA, Hale CA, Bickmore BR, Nelson ST, Munroe JS (2019) Trace element chemistry of atmospheric deposition along the Wasatch Front (Utah, USA) reflects regional playa dust and local urban aerosols. Chem Geol 530:119317

    CAS  Google Scholar 

  • Grimm NB, Chacón A, Dahm CN, Hostetler SW, Lind OT, Starkweather PL, Wurtsbaugh WW (1997) Sensitivity of aquatic ecosystems to climatic and anthropogenic changes: the Basin and Range, American Southwest and Mexico. Hydrol Process 11(8):1023–1041

    Google Scholar 

  • Gwynn JW (2007). Great Salt Lake brine chemistry databases and reports, 1966–2006. Utah Geological Survey

    Google Scholar 

  • Hawkins CP (2015) The clean water rule: defining the scope of the clean water act. Freshw Sci 34(4):1585–1587

    Google Scholar 

  • Hurteau MD, Bradford JB, Fulé PZ, Taylor AH, Martin KL (2014) Climate change, fire management, and ecological services in the southwestern US. For Ecol Manag 327:280–289

    Google Scholar 

  • Huybers K, Rupper S, Roe GH (2016) Response of closed basin lakes to interannual climate variability. Clim Dyn 46:3709–3723

    Google Scholar 

  • Jellison R, Williams WD, Timms B, Alcocer J, Aladin NV (2008) Salt lakes: values, threats and future. In: Polunin NVC (ed) Aquatic ecosystems. Cambridge University Press

    Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5(6):e157

    PubMed  PubMed Central  Google Scholar 

  • Johnson WP, Wurtsbaugh W, Belovsky GE, Baxter BK, Black F, Angeroth C, Jewell P, Yang S (2019) Geochemistry of Great Salt Lake. In: Maurice PA (ed) Encyclopedia of water, science, technology and society. Wiley, Hoboken, NJ

    Google Scholar 

  • Jones BF, Naftz DL, Spencer RJ, Oviatt CG (2009) Geochemical evolution of Great Salt Lake, Utah, USA. Aquat Geochem 15(1–2):95–121

    CAS  Google Scholar 

  • Karl TR, Young PJ (1986) Recent heavy precipitation in the vicinity of the Great Salt Lake: just how unusual? J Clim Appl Meteorol 25(3):353–363

    Google Scholar 

  • Keck W, Hassibe W (1979) The Great Salt Lake. U.S. Geological Survey 25, Salt Lake City

    Google Scholar 

  • Kijowski AK, Neill J, Wickline A, Swift J, Butler JK, Kimberly DA, VanLeeuwen J, Luft J, Stone K (2020) American White Pelicans of Gunnison Island. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Koehler CL (1995) Water rights and the public trust doctrine: resolution of the Mono Lake controversy. Ecol LQ 22:541

    Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    CAS  PubMed  Google Scholar 

  • Kunkel KE, Stevens LE, Stevens SE, Sun L, Janssen E, Wuebbles D, Redmond KT, Dobson JG (2013) Regional climate trends and scenarios for the U.S. National Climate Assessment NOAA Technical Report NESDIS 142-5 Part 5 Climate of the Southwest US

    Google Scholar 

  • Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation events under global warming. Clim Change 132(4):501–515

    Google Scholar 

  • Lindsay MR, Anderson C, Fox N, Scofield G, Allen J, Anderson E, Bueter L, Poudel S, Sutherland K, Munson-McGee JH, Van Nostrand JD, Zhou J, Spear JR, Baxter BK, Lageson DR, Boyd ES (2017) Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 15(1):131–145

    CAS  PubMed  Google Scholar 

  • Lindsay MR, Johnson RE, Baxter BK, Boyd ES (2019) Effects of salinity on microbialite-associated production in Great Salt Lake, Utah. Ecology 100(3):e02611

    PubMed  Google Scholar 

  • Lindsay MR, Dunham EC, Boyd ES (2020) Microbialites of Great Salt Lake. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Litchfield CD (2011) Saline lakes. In: Encyclopedia of geobiology. Springer, Heidelberg, pp 765–769

    Google Scholar 

  • Loving BL, Waddell KM, Miller CW (2000) Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987–98. US Geol Surv Water Resour Invest Rep 2000-4221

    Google Scholar 

  • MacDonald GM (2010) Water, climate change, and sustainability in the southwest. Proc Natl Acad Sci USA 107(50):21256–21262

    CAS  PubMed  Google Scholar 

  • Madison RJ (1970) Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah. In: Utah Geological and Mineralogical Survey Water-Resources Bulletin 14

    Google Scholar 

  • Madsen DB (1999) The nature of Great Basin environmental change during the Pleistocene/Holocene transition and its possible impact on human populations. In: Beck C (ed) Models for the millennium: the current status of Great Basin anthropological research. University of Utah Press, Salt Lake City, UT, pp 75–82

    Google Scholar 

  • Madsen DB (2015) A framework for the initial occupation of the Americas. PaleoAmerica 1:217–250

    Google Scholar 

  • Madsen DB (2016) The early human occupation of the Bonneville Basin. In: Oviatt CG, Shroder JF (eds) Lake Bonneville: a scientific update, Developments in earth surface processes, vol 20. Elsevier, Amsterdam, pp 504–520

    Google Scholar 

  • Mallia DV, Lin JC, Urbanski S, Ehleringer J, Nehrkorn T (2015) Impacts of upwind wildfire emissions on CO, CO2, and PM2. 5 concentrations in Salt Lake City, Utah. J Geophys Res Atmos 120(1):147–166

    CAS  Google Scholar 

  • Mann ME, Lall U, Saltzman B (1995) Decadal-to-centennial-scale climate variability: insights into the rise and fall of the Great Salt Lake. Geophys Res Lett 22(8):937–940

    Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA, Griset O (2006) Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Can J Fish Aquat Sci 63:2236–2248

    CAS  Google Scholar 

  • Marden B, Brown P, Bosteels T (2020) Great Salt Lake Artemia: ecosystem functions and services with a global reach. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • McGenity TJ, Oren A (2012) Hypersaline environments. In: Bell EM (ed) Life at extremes: environments, organisms and strategies for survival. CAB International, Wallingford, UK, pp 402–437

    Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138

    Google Scholar 

  • Meng Q (2019) Climate change and extreme weather drive the declines of saline lakes: a showcase of the Great Salt Lake. Climate 7(2):19

    Google Scholar 

  • Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66(2):268–280

    CAS  PubMed  Google Scholar 

  • Mohammed IN, Tarboton DG (2012) An examination of the sensitivity of the Great Salt Lake to changes in inputs. Water Resour Res 48(11)

    Google Scholar 

  • Moore JN (2016) Recent desiccation of western great basin saline lakes: lessons from Lake Abert, Oregon, U.S.A. Sci Total Environ 554–555:142–154. https://doi.org/10.1016/j.scitotenv.2016.02.161

    Article  CAS  PubMed  Google Scholar 

  • Mufson S, Mooney C, Eilperin J, Muyskens J (2019) 2°C Beyond the limit: extreme climate change has arrived in America. Washington Post, Aug. 13, 2019

    Google Scholar 

  • Naftz D, Angeroth C, Kenney T, Waddell B, Darnall N, Silva S, Perchon C, Whitehead J (2008a) Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA. Appl Geochem 23(6):1731–1744

    CAS  Google Scholar 

  • Naftz DL, Johnson WP, Freeman ML, Beisner K, Diaz X, Cross VA (2008b) Estimation of selenium loads entering the south arm of Great Salt Lake, Utah. US Geological Survey scientific investigations report, 5069

    Google Scholar 

  • Naftz DL, Fuller C, Cederberg J, Krabbenhoft D, Whitehead J, Garberg J, Beisner K (2009) Mercury inputs to Great Salt Lake, Utah: reconnaissance-phase results. Nat Resour Environ Iss 15(1):5

    Google Scholar 

  • Naftz DL, Millero FJ, Jones BF, Green WR (2011) An equation of state for hypersaline water in Great Salt Lake, Utah, USA. Aquat Geochem 17:809–820

    CAS  Google Scholar 

  • Neill J, Leite B, Gonzales J, Sanchez K, Luft J (2016) 2015 Great Salt lake eared grebe aerial photo survey: Annual report. Utah Division of Wildlife Resources, Salt Lake City, UT

    Google Scholar 

  • Nichols J (2014) No lasting resorts: the shifting shoreline of Great Salt Lake. In: Proceedings of world conference on environmental history, Guimarães, Portugal

    Google Scholar 

  • Null SE, Wurtsbaugh WA (2020) Water development, consumptive water uses, and Great Salt Lake. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Oren A (1993) The Dead Sea—alive again. Experientia 49(6-7):518–522

    Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3(2–3):387–398

    CAS  Google Scholar 

  • Oring LW, Neel L, Oring KE (2019) Intermountain West Regional Shorebird Plan. https://www.shorebirdplan.org/wp-content/uploads/2013/01/IMWEST4.pdf. Accessed 11 Sept 2019

  • Oviatt CG (1997) Lake Bonneville fluctuations and global climate change. Geology 25(2):155–158

    CAS  Google Scholar 

  • Oviatt CG, Shroder JF (eds) (2016) Lake Bonneville a scientific update, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Oviatt CG, Thompson RS, Kaufman DS, Bright J, Forester RM (1999) Reinterpretation of the Burmester Core, Bonneville Basin, Utah. Quat Res 52:180–184

    Google Scholar 

  • Oviatt CG, Madsen DM, Miller DM, Thompson RS, McGeehin JP (2015) Early Holocene Great Salt Lake, USA. Quat Res 84:57–68

    CAS  Google Scholar 

  • Painter TH, Skiles SM, Deems JS, Brandt WT, Dozier J (2018) Variation in rising limb of Colorado River snowmelt runoff hydrograph controlled by dust radiative forcing in snow. Geophys Res Lett 45(2):797–808

    Google Scholar 

  • Parr RL, Carlyle SW, O’Rourke DH (1996) Ancient DNA analysis of Fremont Amerindians of the Great Salt Lake wetlands. Am J Phys Anthropol 99:507–518

    CAS  PubMed  Google Scholar 

  • Paul DS, Manning AE (2002) Great Salt Lake Waterbird Survey Five-Year Report (1997–2001); Publication Number 08-38. Utah Division of Wildlife Resources, Salt Lake City, UT

    Google Scholar 

  • Perl S, Baxter BK (2020) Great Salt Lake as an astrobiology analogue for ancient Martian hypersaline aqueous systems. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Perlich PS, Hollingshaus M, Harris ER, Tennert J, Hogue MT (2015) Utah’s long-term demographic and economic projections summary. Research brief. Kem C. Gardner Policy Institute, University of Utah, Salt Lake City, UT

    Google Scholar 

  • Peterson C, Gustin M (2008) Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Sci Total Environ 405(1–3):255–268

    CAS  PubMed  Google Scholar 

  • Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A (2015) Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349:aab3884. https://doi.org/10.1126/science.aab3884

  • Ryan E (2015) The public trust doctrine, private water allocation, and Mono Lake: The historic saga of National Audubon Society v Superior Court. Environ Law 45:561

    Google Scholar 

  • Saxton HJ, Goodman JR, Collins JN, Black FJ (2013) Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods. Environ Toxicol Chem 32(11):2630–2636

    CAS  PubMed  Google Scholar 

  • Scalzitti J, Strong C, Kochanski A (2016) Climate change im-pact on the roles of temperature and precipitation in western U.S. snowpack variability. Geophys Res Lett 43:5361–5369

    Google Scholar 

  • Scott AF, Black FJ (2020) Mercury bioaccumulation and biomagnification in Great Salt Lake ecosystems. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Shoop M (2019) Watershed moment for addressing Great Salt Lake’s declining water levels. https://www.audubon.org/news/watershed-moment-addressing-great-salt-lakes-declining-water-levels. Accessed 11 Sept 2019

  • Shroder JF, Cornwell K, Oviatt CG, Lowndes TC (2016) Landslides, alluvial fans, and dam failure at Red Rock Pass: the outlet of Lake Bonneville. In: Oviatt CG, Shroder JF (eds) Lake Bonneville a scientific update, 1st edn. Elsevier, Amsterdam, pp 75–85

    Google Scholar 

  • Shupe SJ, Weatherford GD, Checchio E (1989) Western water rights: the era of reallocation. Nat Resour J 29:413–417

    Google Scholar 

  • Silcox GD, Kelly KE, Crosman ET, Whiteman CD, Allen BL (2012) Wintertime PM2. 5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos Environ 46:17–24

    CAS  Google Scholar 

  • Skiles SM, Mallia DV, Hallar AG, Lin JC, Lambert A, Petersen R, Clark S (2018) Implications of a shrinking Great Salt Lake for dust on snow deposition in the Wasatch Mountains, UT, as informed by a source to sink case study from the 13–14 April 2017 dust event. Environ Res Lett 13(12):124031

    CAS  Google Scholar 

  • Smith WW (1936) Evidence of a bacterial flora indigenous to the Great Salt Lake. M.S. Thesis. University of Utah, Salt Lake City, UT

    Google Scholar 

  • Smith MD, Goater SE, Reichwaldt ES, Knott B, Ghadouani A (2010) Effects of recent increases in salinity and nutrient concentrations on the microbialite community of Lake Clifton (Western Australia): are the thrombolites at risk? Hydrobiologia 649:207–216

    CAS  Google Scholar 

  • Sorenson ED, Hoven HM, Neil J (2020) Great Salt Lake shorebirds, their habitats and food base. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Spiegel D (2010) Can the public trust doctrine save western groundwater. NYU Envtl L J 18:412

    Google Scholar 

  • Stansbury H (1855) Exploration of the Valley of the Great Salt Lake: including a reconnaissance of a new route through the Rocky Mountains. Lippincott, Gramabo, Philadelphia

    Google Scholar 

  • State of Utah (2000) Great Salt Lake comprehensive management plan and decision document. Utah Department of Natural Resources, Salt Lake City, UT

    Google Scholar 

  • State of Utah (2019a) https://wildlife.utah.gov/habitat/farmington_bay.php. Accessed 15 Aug 2019

  • State of Utah (2019b) https://wildlife.utah.gov/gsl/industries/index.php. Accessed 15 Aug 2019

  • State of Utah (2019c) https://wildlife.utah.gov/gsl/. Accessed 15 Aug 2019

  • State of Utah (2019d). https://deq.utah.gov/water-quality/great-salt-lake-water-quality-strategy. Accessed 15 Aug 2019

  • State of Utah (2019e) https://water.utah.gov/. Accessed 15 Aug 2019

  • State of Utah (2019f) https://le.utah.gov/~2019/bills/static/HCR010.html. Accessed 15 Aug 2019

  • State of Utah (2019g) https://deq.utah.gov/water-quality/hb-343-great-salt-lake-advisory-council. Accessed 15 Aug 2019

  • Stephens DW (1990) Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847–1987. Hydrobiologia 197(1):139–146

    CAS  Google Scholar 

  • Stephens DW, Birdsey PW Jr (2002) Population dynamics of the brine shrimp, Artemia franciscana. Great Salt Lake, and regulation of commercial shrimp harvest:327–336

    Google Scholar 

  • Strong C, Kochanski AK, Crosman ET (2014) A slab model of the Great Salt Lake for regional climate simulation. J Adv Model Earth Syst 6:602–615

    Google Scholar 

  • Stutz J, Ackermann R, Fast JD, Barrie L (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29(10):18–11

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJ, Holman I, Thomson AM, Brown RA, Rosenberg NJ, Srinivasan R, Izaurralde RC (2005) Climate change impacts for the conterminous USA: an integrated assessment. Clim Change 69(1):67–88

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L (2013) Ground water and climate change. Nat Clim Change 3(4):322

    Google Scholar 

  • The Deseret News (1907, July 27) Weary path trodden by intrepid band, to the shores of America’s Dead Sea. pp 4–5

    Google Scholar 

  • The Intergovernmental Panel on Climate Change (IPCC) (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Geneva

    Google Scholar 

  • Thomson AM, Brown RA, Rosenberg NJ, Srinivasan R, Izaurralde RC (2005) Climate change impacts for the conterminous USA: an integrated assessment. Clim Change 69(1):67–88

    Google Scholar 

  • Treide H (2012) Ground water and climate change. Nat Clim Change 3(4):1–8

    Google Scholar 

  • Trentelman CK (2020) The relationship between humans and Great Salt Lake: dynamics of Change. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Tweed S, Grace M, Leblanc M, Cartwright I, Smithyman D (2011) The individual response of saline lakes to a severe drought. Sci Total Environ 409:3919–3933

    CAS  PubMed  Google Scholar 

  • United States Bureau of Reclamation (1962) Bear River Project, Part I, Feasibility Report, Oneida Division, Idaho and Utah. Part II, Reconnaissance Report, Blacksmith Fork Division, Utah. United States Bureau of Reclamation, Salt Lake City, p 86

    Google Scholar 

  • United States Division of Fish and Wildlife (2019) https://www.fws.gov/Refuge/Bear_River_Migratory_Bird_Refuge/about.html. Accessed 15 Aug 2019

  • United States Geologic Survey (2019) http://ut.water.usgs.gov/greatsaltlake/elevations Accessed 18 Aug 2019

  • United States Global Climate Research Program (2017) In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK (eds) Climate science special report: Fourth national climate assessment, Vol I. U.S. Global Change Research Program, Washington, DC, 470 p

    Google Scholar 

  • Utah Rivers Council (2017) Alternatives to Bear River Development. http://static1.squarespace.com/static/5a46b200bff2007bcca6fcf4/5a4d26a4448c8a3e3c8810dd/5a4d26b6448c8a3e3c881341/1515005622382/Bear-River-Alternatives.pdf?format=original. Accessed 11 Sept 2019.

  • Ventosa A, Arahal DR (2009) Physico-chemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2:247–262

    Google Scholar 

  • Wagner JD, Cole JE, Beck JW, Patchett PJ, Henderson GM, Barnett HR (2010) Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat Geosci 3(2):110

    CAS  Google Scholar 

  • Wang SY, Gillies RR, Jin J, Hipps LE (2010) Coherence between the Great Salt Lake level and the Pacific quasi-decadal oscillation. J Clim 23(8):2161–2177

    Google Scholar 

  • Wang J, Song C, Teager JT, Yao F, Famiglietti JS, Sheng Y, MacDonald GM, Brun F, Schmied HM, Marston RA, Wada Y (2018) Recent global decline in endorheic basin water storges. Nat Geosci 11(12):926–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JS, Null SE, Tarboton DG (2015) How do changes to the railroad causeway in Utah’s Great Salt Lake affect water and salt flow? PloS one 10(12):e0144111

    PubMed  PubMed Central  Google Scholar 

  • Whiteley NM, Taylor EW, El Haj AJ (1997) Seasonal and latitudinal adaptation to temperature in crustaceans. J Therm Biol 22(6):419–427

    Google Scholar 

  • Whiteman CD, Hoch SW, Horel JD, Charland A (2014) Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos Environ 94:742–753

    CAS  Google Scholar 

  • Williams WD (1993) Conservation of salt lakes. Hydrobiologia 267:291–306

    Google Scholar 

  • Williams WD (1996) What future for saline lakes? Environment 38(13–20):38–39

    Google Scholar 

  • Williams WD (2002) Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ Conserv 29:154–167

    Google Scholar 

  • Wilson EO (2017) Biophilia and the conservation ethic. In: Evolutionary perspectives on environmental problems. Routledge, London, pp 263–272

    Google Scholar 

  • Wine ML, Null SE, DeRose RJ, Wurtsbaugh WA (2019) Climatization—negligent attribution of Great Salt Lake desiccation: a comment on Meng (2019). Climate 7(5):67

    Google Scholar 

  • Witze A (2018) Why extreme rains are gaining strength as the climate warms. Nature 563(7732):458–460. https://doi.org/10.1038/d41586-018-07447-1

    CAS  PubMed  Google Scholar 

  • Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER (2010) A 1,200-year perspective of 21st century drought in southwestern North America. Proc Natl Acad Sci 107(50):21283–21288

    CAS  PubMed  Google Scholar 

  • Wurtsbaugh WA (1992) Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89(2):168–175

    PubMed  Google Scholar 

  • Wurtsbaugh WA, Gliwicz ZM (2001) Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia 466:119–132. https://doi.org/10.1023/A:101450251

    Article  Google Scholar 

  • Wurtsbaugh WA, Miller C, Null S, Wilcock P, Hahnenberger M, Howe F (2016) Impacts of water development on Great Salt Lake and the Wasatch Front. Utah State University, White Paper. https://works.bepress.com/wayne_wurtsbaugh/171/

    Google Scholar 

  • Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J (2017) Decline of the world’s saline lakes. Nat Geosci 10(11):816. https://doi.org/10.1038/ngeo3052

    Article  CAS  Google Scholar 

  • Yeager KN, Steenburgh WJ, Alcott TI (2013) Contributions of lake-effect periods to the cool-season hydroclimate of the Great Salt Lake basin. J Appl Meteorol Climatol 52(2):341–362

    Google Scholar 

  • Yidana SM, Lowe M, Emerson RL (2010) Wetlands in northern Salt Lake Valley, Salk Lake County, evaluation of the threats posed by groundwater development and drought. Utah Geological Survey Report of Investigation 268, Salt Lake City, UT

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for input and edits from Erik Crosman and helpful discussions about water diversions with Sarah Null and Wayne Wurtsbaugh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie K. Baxter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baxter, B.K., Butler, J.K. (2020). Climate Change and Great Salt Lake. In: Baxter, B., Butler, J. (eds) Great Salt Lake Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-40352-2_2

Download citation

Publish with us

Policies and ethics