Skip to main content

Mercury Bioaccumulation and Biomagnification in Great Salt Lake Ecosystems

  • Chapter
  • First Online:
Great Salt Lake Biology

Abstract

Historic and ongoing mercury (Hg) contamination of Great Salt Lake (GSL) has resulted in concern of Hg toxicity for both humans and wildlife. Although Hg levels in GSL surface waters are below Environmental Protection Agency (EPA)’s aquatic life standard, anoxic waters of the deep brine layer at the bottom of the stratified south arm of GSL contain some of the highest concentrations of methylmercury ever measured for a natural water body. High Hg concentrations in muscle from three species of ducks at GSL exceeded EPA screening levels and resulted in the world’s first waterfowl consumption advisory due to Hg. Because the greatest concerns of Hg toxicity at GSL are its potential negative impacts to birds and hunters who target waterfowl, Hg research in this ecosystem has focused on birds and their common prey (brine shrimp and brine flies). Hg concentrations in brine shrimp and brine fly larvae pose a low to moderate toxicity risk for birds, but GSL has been identified as an avian Hg hotspot with Hg blood levels commonly exceeding toxicity benchmarks. Hg in waterfowl increases as they feed higher on the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman JT, Herzog MP, Hartman CA, Isanhart JP, Hering G, Vaughn S, Cavitt JF, Eagles-Smith CA, Browers H, Cline C, Vest J (2015) Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah (No. 2015-1020). US Geological Survey

    Google Scholar 

  • Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK, Elliott JE, Vander Pol SS, Bryan CE (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aldrich TW, Paul DS (2002) Avian ecology of Great Salt Lake. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Utah Department of Natural Resources Special Publication, Salt Lake City, UT

    Google Scholar 

  • Baeyens W, Leermakers M, Papina T, Saprykin A, Brion N, Noyen J, De Gieter M, Elskens M, Goeyens L (2003) Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary fish. Arch Environ Contam Toxicol 45(4):498–508

    CAS  PubMed  Google Scholar 

  • Bardsley T, Wood A, Hobbins M, Kirkham T, Briefer L, Niermeyer J, Burian S (2013) Planning for an uncertain future: climate change sensitivity assessment toward adaptation planning for public water supply. Earth Interact 17(23):1–26

    Google Scholar 

  • Bargagli R, Monaci F, Sanchez-Hernandez JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76

    CAS  Google Scholar 

  • Baskin RL (2005) Calculation of area and volume for the south part of Great Salt Lake, Utah. USGS Open-File Report 2005 1327. US Geological Survey, Salt Lake City, UT

    Google Scholar 

  • Belovsky GE, Stephens D, Perschon C, Birdsey P, Paul D, Naftz D, Baskin R, Larson C, Mellison C, Luft J, Mosley R (2011) The Great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere 2(3):1–40

    Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller C (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Biogeochemistry of environmentally important trace elements. American Chemical Society, Washington, DC

    Google Scholar 

  • Black FJ, Poulin BA, Flegal AR (2012) Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim Cosmochim Acta 84:492–507

    CAS  Google Scholar 

  • Boyd ES, Yu RQ, Barkay T, Hamilton TL, Baxter BK, Naftz DL, Marvin-DiPasquale M (2017) Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Sci Total Environ 581:495–506

    PubMed  Google Scholar 

  • Brookens TJ, O’Hara TM, Taylor RJ, Bratton GR, Harvey JT (2008) Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from Central California. Mar Pollut Bull 56(1):27–41

    CAS  PubMed  Google Scholar 

  • Cahill TA, Fill TE, Reid JS, Gearhart EA, Gillette DA (1996) Saltasting particles, playa crusts and dust aerosols at Owens (dry) Lake, California. Earth Surf Process Landf 21(7):621–639

    CAS  Google Scholar 

  • Carozzi AV (1962) Observations on algal biostromes in the Great Salt Lake, Utah. J Geol 70:246–252

    Google Scholar 

  • Cavitt JF, Hall J, Swenson L, Wilson N (2012) Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah. Report to Utah Department of Environmental Quality, Division of Water Quality, Salt Lake City, UT

    Google Scholar 

  • Chen CY, Pickhardt PC, Xu MQ, Folt CL (2008) Mercury and arsenic bioaccumulation and eutrophication in Baiyangdian Lake, China. Water Air Soil Pollut 190:115–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    CAS  PubMed  Google Scholar 

  • Collins N (1980) Population ecology of Ephydra cinerea Jones (Diptera: Ephydridae), the only benthic metazoan of the Great Salt Lake, U.S.A. Hydrobiologia 68(2):99–112

    Google Scholar 

  • Conover MR, Vest JL (2009) Selenium and mercury concentrations in California gulls breeding on the Great Salt Lake, Utah, USA. Environ Toxicol Chem 28(2):324–329

    CAS  PubMed  Google Scholar 

  • Cossa D, Averty B, Pirrone N (2009) The origin of methylmercury in open Mediterranean waters. Limnol Oceanogr 54(3):837–844

    CAS  Google Scholar 

  • Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl Geochem 23(3):529–546

    CAS  Google Scholar 

  • David N, McKee LJ, Black FJ, Flegal AR, Conaway CH, Schoellhammer DH, Ganju NK (2009) Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA. Environ Toxicol Chem 28:2091–2100

    CAS  PubMed  Google Scholar 

  • Diaz X, Johnson WP, Fernandez D, Naftz DL (2009) Size and elemental distributions of nano-to micro-particulates in the geochemically-stratified Great Salt Lake. Appl Geochem 24(9):1653–1665

    CAS  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    CAS  Google Scholar 

  • Eckley CS, Hintelmann H (2006) Determination of mercury methylation potentials in the water column of lakes across Canada. Sci Total Environ 368(1):111–125

    CAS  PubMed  Google Scholar 

  • Evers DC, Lane OP, Savoy L, Goodale W (2004) Assessing the impacts of methylmercury on piscivorous wildlife using a wildlife criterion value based on the Common Loon, 1998–2003. Report BRI, 5

    Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason R, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32(1):1–7

    CAS  Google Scholar 

  • Francesconi KA, Lenanton RC (1992) Mercury contamination in a semi-enclosed marine embayment: organic and inorganic mercury content of biota, and factors influencing mercury levels in fish. Mar Environ Res 33(3):189–212

    CAS  Google Scholar 

  • Gao Y, Yan CH, Yu XD, Wu SH (2006) Effects of perinatal exposure to methylmercury on the structure of hippocampus and cerebellum in young rats. J Hyg Res 35(4):402–405

    CAS  Google Scholar 

  • Garfin G, Jardine A, Merideth R, Black M, LeRoy S (2013) Assessment of climate change in the southwest United States: a report prepared for the national climate assessment. Southwest climate alliance. Island Press, Washington, DC

    Google Scholar 

  • Gill FB (1995) Migration. In: Ornithology, 2nd edn. W.H. Freeman, New York, pp 287–309

    Google Scholar 

  • Gill TE, Gillette DA (1991) Owens Lake: a natural laboratory for aridification, playa desiccation and desert dust. Geol Soc Am 23(5):462

    Google Scholar 

  • Great Salt Lake Ecosystem Program: Historic Harvest Data (2019). https://wildlife.utah.gov/gsl/harvest/historic_harvest_data.php. Accessed 9 May 2019

  • Halley RB (1976) Textural variation within Great Salt Lake algal mounds. In: Walter MR (ed) Developments in sedimentology. Elsevier, Amsterdam, pp 435–446

    Google Scholar 

  • Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondgrad SL, Erwin CA (2009) Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 56(1):129–138

    CAS  PubMed  Google Scholar 

  • Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47(6):2441–2456. https://doi.org/10.1021/es304370g

    Article  CAS  PubMed  Google Scholar 

  • Jackson AK, Evers DC, Folsom SB, Condon AM, Diener J, Goodrick LF, McGann AJ, Schmerfeld J, Cristol DA (2011) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159(12):3302–3308

    CAS  PubMed  Google Scholar 

  • Johnson WP, Swanson N, Black B, Rudd A, Carling G, Fernandez DP, Luft J, Van Leeuwen J, Marvin-DiPasquale M (2015) Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA. Sci Total Environ 511:489–500

    CAS  PubMed  Google Scholar 

  • Jones G, Miller G (2005) Mercury and modern gold mining in Nevada: final report to US Environmental Protection Agency Region IX. University of Nevada, Reno, NV

    Google Scholar 

  • Jones EF, Wurtsbaugh WA (2014) The great salt Lake’s monimolimnion and its importance for mercury bioaccumulation in brine shrimp (Artemia franciscana). Limnol Oceanogr 59(1):141–155

    CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamborg CH, Yiğiterhan O, Fitzgerald WF, Balcom PH, Hammerschmidt CH, Murray J (2008) Vertical distribution of mercury species at two sites in the Western Black Sea. Mar Chem 111:77–89

    CAS  Google Scholar 

  • Larson CA, Belovsky GE (2013) Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. J Plankton Res 35(5):1154–1166

    Google Scholar 

  • Lindsay MR, Anderson C, Fox N, Scofield G, Allen J, Anderson E, Bueter L, Poudel S, Sutherland K, Munson-McGee JH, Van Nostrand JD (2017) Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 15(1):131–145

    CAS  PubMed  Google Scholar 

  • Loving BL, Miller CW, Waddell KM (2000) Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98 (No. 2000-4221). US Geological Survey

    Google Scholar 

  • Marvin-DiPasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34(23):4908–4916

    CAS  Google Scholar 

  • Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16(4):40–41

    Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO J Hum Environ 36(1):3–12

    CAS  Google Scholar 

  • Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard OFX (2007) Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar Chem 107(1):49–63

    CAS  Google Scholar 

  • Naftz D, Angeroth C, Kenney T, Waddell B, Darnall N, Silva S, Perschon C, Whitehead J (2008) Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA. Appl Geochem 23(6):1731–1744

    CAS  Google Scholar 

  • Naftz D, Fuller C, Cederberg J, Krabbenhoft D, Whitehead J, Garberg J, Beisner K (2009) Mercury inputs to Great Salt Lake, Utah: reconnaissance-phase results. Nat Resour Environ Issues 15(1):5

    Google Scholar 

  • Neill J, Leite B, Gonzales J, Sanchez K, Luft J (2016) 2015 Great Salt Lake Eared Grebe aerial photo survey. Annual Report. Great Salt Lake Ecosystem Program, Utah Division of Wildlife Resources

    Google Scholar 

  • North American Bird Conservation Initiative (NABCI) (2009) NABCI US Committee. The state of the birds, United States of America

    Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40(22):4048–4063

    CAS  Google Scholar 

  • Peterson C, Gustin M (2008) Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Sci Total Environ 405(1-3):255–268

    CAS  PubMed  Google Scholar 

  • Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41(1):125–131

    CAS  PubMed  Google Scholar 

  • Pickhardt PC, Stepanova M, Fisher NS (2006) Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ Toxicol Chem 25(8):2132–2142

    CAS  PubMed  Google Scholar 

  • Qureshi A, MacLeod M, Scheringer M, Hungerbühler K (2009) Mercury cycling and species mass balances in four North American lakes. Environ Pollut 157(2):452–462

    CAS  PubMed  Google Scholar 

  • Saxton HJ, Goodman JR, Collins JN, Black FJ (2013) Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods. Environ Toxicol Chem 32(11):2630–2636

    CAS  PubMed  Google Scholar 

  • Scalzitti J, Strong C, Kochanski A (2016) Climate change impact on the roles of temperature and precipitation in western U.S. snowpack variability. Geophys Res Lett 43:5361–5369

    Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO J Hum Environ 36(1):12–20

    CAS  Google Scholar 

  • Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaeglé L, Sunderland EM (2008) Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem Cycles 22(2):1

    Google Scholar 

  • Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry 64:53–76

    CAS  Google Scholar 

  • Sonne C, Dietz R, Leifsson PS, Asmund G, Born EW, Kirkegaard M (2007) Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels? Environ Health 6:11

    PubMed  PubMed Central  Google Scholar 

  • Sorensen ED, Hoven HM, Neill J (2020) Great Salt Lake shorebirds, their habitats and food base. In: Baxter BK, Butler JK (eds) Great Salt Lake biology: a terminal lake in a time of change. Springer, Cham

    Google Scholar 

  • Strode SA, Jaeglé L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, Mason RP, Slemr F (2007) Air-sea exchange in the global mercury cycle. Glob Biogeochem Cycles 21(1). https://doi.org/10.1029/2006GB002766

  • Sunderland EM (2007) Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ Health Perspect 115:235–242. https://doi.org/10.1289/ehp.9377

    Article  CAS  PubMed  Google Scholar 

  • Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM (2009) Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Glob Biogeochem Cycles 23(2). https://doi.org/10.1029/2008GB003425

  • US Environmental Protection Agency (2007) National listing of fish advisories technical fact sheet, EPA-823-F-07-003. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (2010) Alternative futures analysis of Farmington Bay wetlands in the Great Salt Lake ecosystem, EPA-600-R-10-032. US Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Utah Department of Environmental Quality (2017) Utah toxic release inventory, reporting year 2017 Data Summary Report, December 2018. https://deq.utah.gov/environmental-response-and-remediation/cercla-comprehensive-environmental-response-compensation-and-liability-act/toxic-release-inventory-tri-program

  • Utah Department of Environmental Quality, Water Quality (2014) 2012-2014 Final Integrated Report: Chapter 7: Great Salt Lake

    Google Scholar 

  • Utah Department of Health (2005) An evaluation of mercury concentrations in ducks from the Great Salt Lake Utah for 2004 and 2005. Environmental Epidemiology Program, Utah Department of Health, Salt Lake City, UT

    Google Scholar 

  • Utah Department of Health (2006) An evaluation of mercury concentrations in ducks from the Great Salt Lake Utah for 2005 and 2006. Environmental Epidemiology Program, Utah Department of Health, Salt Lake City, UT

    Google Scholar 

  • Utah Department of Natural Resources (2011) Great salt Lake comprehensive management plan revision. May 2011

    Google Scholar 

  • Utah Division of Water Quality (2012). https://documents.deq.utah.gov/water-quality/standards-technical-services/great-salt-lake-advisory-council/Activities/DWQ-2012-006864.pdf

  • Utah Divisions of Water Resources (2007) Drought in Utah: learning from the past - preparing for the future. Utah Division of Water Resources, Salt Lake City, UT

    Google Scholar 

  • Valdes C, Black FJ, Stringham B, Collins JN, Goodman JR, Saxton HJ, Mansfield CR, Schmidt JN, Yang S, Johnson WP (2017) Total mercury and methylmercury response in water, sediment, and biota to destratification of the Great Salt Lake, Utah, United States. Environ Sci Technol 51(9):4887–4896

    CAS  PubMed  Google Scholar 

  • Vest JL, Conover MR, Perschon C, Luft J, Hall JO (2009) Trace element concentrations in wintering waterfowl from the Great Salt Lake, Utah. Arch Environ Contam Toxicol 56(2):302–316

    CAS  PubMed  Google Scholar 

  • Waddell B, Cline C, Darnall N, Boeke E, Sohn R (2009) Assessment of contaminants in the wetlands and open waters of the Great Salt Lake, Utah. US Fish and Wildlife Service Ecological Services, Salt Lake City, UT

    Google Scholar 

  • Wang WX, Wong RS (2003) Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Mar Ecol Prog Ser 261:257–268

    CAS  Google Scholar 

  • Watras CJ, Back RC, Halvorsen S, Hudson RJ, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219(2-3):183–208

    CAS  PubMed  Google Scholar 

  • Wurtsbaugh WA (2012) Paleolimnological analysis of the history of metals contamination in the Great Salt Lake, Utah. Utah State University Watershed Sciences Faculty Publications. Paper 556. http://digitalcommons.usu.edu/wats_facpub/556

  • Wurtsbaugh WA, Gliwicz ZM (2001) Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. In: Saline lakes. Springer, Dordrecht, pp 119–132

    Google Scholar 

  • Wurtsbaugh WA, Gardberg J, Izdepski C (2011) Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Sci Total Environ 409(20):4425–4434

    CAS  PubMed  Google Scholar 

  • Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J (2017) Decline of the world’s saline lakes. Nat Geosci 10(11):816

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Black .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, A.F., Black, F.J. (2020). Mercury Bioaccumulation and Biomagnification in Great Salt Lake Ecosystems. In: Baxter, B., Butler, J. (eds) Great Salt Lake Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-40352-2_14

Download citation

Publish with us

Policies and ethics