Skip to main content

The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation

  • Chapter
  • First Online:
Environmental Soil Remediation and Rehabilitation

Abstract

Manganese (Mn) oxides are ubiquitous in the environment, being found for example under the form of coatings and nodules in soils, freshwater and marine sediments, and as rock varnishes in temperate, arid, and polar areas. In all these settings, they frequently control or influence the geochemical cycle of many trace elements, including metals and organics, through sorption and oxidative degradation mechanisms. In addition, Mn oxides can be used for soil remediation processes, by taking advantage of their exceptional reactivity.

This chapter is divided in two main sections. The first section is devoted to reviewing the nature of Mn oxides found in pristine natural settings. A specific effort made to distinguish between layered and tunnel structures, and their genetic relationship is discussed. Their reactivity toward metals and organics and the evolution of this reactivity as a function of time and chemical conditions are also discussed. In particular, the short- and long-term metal immobilization processes are reviewed. Considering that the associations observed in natural settings can be considered as representative of those occurring during long-term interaction between Mn oxides and the element of interest, the first section provides insights about the long-term retention capacities of Mn oxides as well as the nature of the products formed during the reaction of Mn oxides and metals or organics. The second section of this chapter focuses on the potential uses of Mn oxides for soil remediation. Mn oxides can be used as (1) oxidative reagents for organic and inorganic substances, (2) sorption mediums of trace metals and metalloids, and (3) reactive sorbent agents for chemical warfare agent and organophosphate pesticides. Efficiencies of each technique are variables and specific care is needed regarding the degradation products in the case of organic substances remediation. The use of both natural and engineered Mn oxides is referenced for soil remediation. Birnessite-like structures seem to be the most efficient Mn oxides for cleanup purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aplin AC, Cronan DS (1985) Ferromanganese oxide deposits from the Central Pacific Ocean, II. Nodules and associated sediments. Geochim Cosmochim Acta 49(2):437–451

    Article  CAS  Google Scholar 

  • Appelo CAJ, Postma D (1999) A consistent model for surface complexation on birnessite (δ-MnO2) and its application to a column experiment. Geochim Cosmochim Acta 63(19–20):3039–3048

    Article  CAS  Google Scholar 

  • Atkins AL, Shaw S, Peacock CL (2014) Nucleation and growth of todorokite from birnessite: implications for trace-metal cycling in marine sediments. Geochim Cosmochim Acta 144:109–125

    Article  CAS  Google Scholar 

  • Atkins AL, Shaw S, Peacock CL (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: implications for Ni cycling in marine sediments. Geochim Cosmochim Acta 189:158–183

    Article  CAS  Google Scholar 

  • Bagherifam S, Lakzian A, Fotovat A, Khorasani R, Komarneni S (2014) In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. J Hazard Mater 273:247–252

    Article  CAS  Google Scholar 

  • Banerjee R, Roy S, Dasgupta S, Mukhopadhyay S, Miura H (1999) Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean. Mar Geol 157(3–4):145–158

    Article  CAS  Google Scholar 

  • Bargar JR, Fuller CC, Marcus MA, Brearley AJ, Perez De la Rosa M, Webb SM, Caldwell WA (2009) Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. Geochim Cosmochim Acta 73(4):889–910

    Article  CAS  Google Scholar 

  • Barrett KA, McBride MB (2005) Oxidative degradation of glyphosate and Aminomethylphosphonate by manganese oxide. Environ Sci Technol 39(23):9223–9228

    Article  CAS  Google Scholar 

  • Bataillard P (2002) Evolution de la spéciation du plomb et du cadmium dans les sols. Ecole Nationale du Génie rural, des Eaux et des Forêts, Paris

    Google Scholar 

  • Bataillard P, Cambier P, Picot C (2003) Short-term transformations of lead and cadmium compounds in soil after contamination. Eur J Soil Sci 54(2):365–376

    Article  CAS  Google Scholar 

  • Birnie AC, Paterson E (1991) The mineralogy and morphology of Iron and manganese oxides in an imperfectly-drained Scottish soil. Geoderma 50(3):219–237

    Article  CAS  Google Scholar 

  • Bodeï S, Manceau A, Geoffroy N, Baronnet A, Buatier M (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim Acta 71(23):5698–5716

    Article  CAS  Google Scholar 

  • Burns RG, Burns VM, Stockman HW (1983) A review of the todorokite-buserite problem; implications to the mineralogy of marine manganese nodules. Am Mineral 68(9–10):972–980

    CAS  Google Scholar 

  • Butler EC, Chen LX, Hansel CM, Krumholz LR, Madden ASE, Lan Y (2015) Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide. Environ Sci-Proc Imp 17(11):1930–1940

    CAS  Google Scholar 

  • Cerling TE, Turner RR (1982) Formation of freshwater Fe-Mn coatings on gravel and the behavior of 60Co, 90Sr, and 137Cs in a small watershed. Geochim Cosmochim Acta 46(8):1333–1343

    Article  CAS  Google Scholar 

  • Chang Chien SW, Chen HL, Wang MC, Seshaiah K (2009) Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. Chemosphere 74(8):1125–1133

    Article  CAS  Google Scholar 

  • Chukhrov FV, Gorshkov AI (1981) On the nature of some hypergene manganese minerals. Chem Erde 40:207–216

    CAS  Google Scholar 

  • Chukhrov FV, Gorshkov AI, Rudnitskaya ES, Beresovskaya VV, Sivtsov AV (1980a) Manganese minerals in clays; a review. Clay Clay Miner 28(5):346–354

    Article  CAS  Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AV, Rudnitskaya YS (1980b) Crystallochemical nature of Co-Ni asbolane. AN SSSR Izvestiya Seriya Geologicheskaya 6:73–81

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AV (1982) On the nature of Co-Ni Asbolane; a component of some supergene ores. In: Amstutz GC, Frenzel G, Kluth C, Moh G, Wauschkuhn A, Zimmermann RA, El Goresy A (eds) Ore genesis: the state of the art. Springer, Heidelberg, pp 230–239

    Chapter  Google Scholar 

  • Chukhrov FV, Sakharov BA, Gorshkov AI, Drits VA, Dikov YP (1985) Crystal structure of birnessite from the Pacific Ocean. Int Geol Rev 27:1082–1088

    Article  Google Scholar 

  • Clarke CE, Kielar F, Talbot HM, Johnson KL (2010) Oxidative fdecolorization of acid Azo dyes by a Mn oxide containing waste. Environ Sci Technol 44(3):1116–1122

    Article  CAS  Google Scholar 

  • Cui H-J, Feng X-H, He J-Z, Tan W-F, Liu F (2006) Effects of reaction conditions on the formation of Todorokite at atmospheric pressure. Clay Clay Miner 54(5):605–615

    Article  CAS  Google Scholar 

  • Cui H, Liu X, Tan W, Feng X, Liu F, Ruan HD (2008) Influence of Mn(III) availability on the phase transformation from layered buserite to tunnel-structured todorokite. Clay Clay Miner 56(4):397–403

    Article  CAS  Google Scholar 

  • Della Puppa L, Komarek M, Bordas F, Bollinger JC, Joussein E (2013) Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J Colloid Interface Sci 399:99–106

    Article  CAS  Google Scholar 

  • Dong D, Hua X, Li Y, Li Z (2002) Lead adsorption to metal oxides and organic material of freshwater surface coatings determined using a novel selective extraction method. Environ Pollut 119(3):317–321

    Article  CAS  Google Scholar 

  • Dorn RI, Krinsley DH, Liu T, Anderson S, Clark J, Cahill TA, Gill TE (1992) Manganese-rich rock varnish does occur in Antarctica. Chem Geol 99(4):289–298

    Article  CAS  Google Scholar 

  • Dresel PE, Wellman DM, Cantrell KJ, Truex MJ (2011) Review: technical and policy challenges in deep Vadose zone remediation of metals and radionuclides. Environ Sci Technol 45(10):4207–4216

    Article  CAS  Google Scholar 

  • Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons. Springer, Berlin, p 371

    Book  Google Scholar 

  • Drits VA, Lanson B, Bougerol-Chaillout C, Gorshkov AI, Manceau A (2002) Structure of heavy-metal sorbed birnessite: Part 2. Results from electron diffraction. Am Mineral 87(11–12):1646–1661

    Article  CAS  Google Scholar 

  • Drits VA, Lanson B, Gaillot A-C (2007) Birnessite polytype systematics and identification by powder X-ray diffraction. Am Mineral 92(5–6):771–788

    Article  CAS  Google Scholar 

  • Duff MC, Hunter DB, Triay IR, Bertsch PM, Reed DT, Sutton SR, Shea-McCarthy G, Kitten J, Eng P, Chipera SJ, Vaniman DT (1999) Mineral associations and average oxidation states of Sorbed Pu on tuff. Environ Sci Technol 33(13):2163–2169

    Article  CAS  Google Scholar 

  • Eary LE, Rai D (1987) Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ Sci Technol 21(12):1187

    Article  Google Scholar 

  • Elzinga EJ (2011) Reductive transformation of Birnessite by Aqueous Mn(II). Environ Sci Technol 45(15):6366–6372

    Article  CAS  Google Scholar 

  • Elzinga (2016) 54Mn radiotracers demonstrate continuous dissolution and Reprecipitation of Vernadite (δ-MnO2) during interaction with aqueous Mn(II). Environ Sci Technol 50(16):8670–8677

    Article  CAS  Google Scholar 

  • Ettler V, Tomasova Z, Komarek M, Mihaljevic M, Sebek O, Michalkova Z (2015) The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids. J Hazard Mater 286:386–394

    Article  CAS  Google Scholar 

  • Exon NF, Raven MD, De Carlo EH (2002) Ferromanganese nodules and crusts from the Christmas Island region, Indian Ocean. Mar Georesour Geotechnol 20(4):275–297

    Article  CAS  Google Scholar 

  • Fendorf SE, Sparks DL, Franz JA, Camaioni DM (1993) Electron paramagnetic resonance stopped-flow kinetic study of manganese(II) sorption-desorption on Birnessite. Soil Sci Soc Am J 57(1):57–62

    Article  CAS  Google Scholar 

  • Friedl G, Wehrli B, Manceau A (1997) Solid phases in the cycling of manganese in eutrophic lakes: new insights from EXAFS spectroscopy. Geochim Cosmochim Acta 61(2):275–290

    Article  CAS  Google Scholar 

  • Gallaher RN, Perkins HF, Tan KH, Radcliffe D (1973) Soil concretions: II. Mineralogical analysis. Soil Sci Soc Am J 37(3):469–472

    Article  CAS  Google Scholar 

  • Gao J, Hedman C, Liu C, Guo T, Pedersen JA (2012) Transformation of Sulfamethazine by manganese oxide in aqueous solution. Environ Sci Technol 46(5):2642–2651

    Article  CAS  Google Scholar 

  • Garvie LAJ, Burt DM, Buseck PR (2008) Nanometer-scale complexity, growth, and diagenesis in desert varnish. Geology 36(3):215–218

    Article  CAS  Google Scholar 

  • Gasparatos D, Tarenidis D, Haidouti C, Oikonomou G (2005) Microscopic structure of soil Fe-Mn nodules: environmental implication. Environ Chem Lett 2(4):175–178

    Article  CAS  Google Scholar 

  • Ginder-Vogel M, Landrot G, Fischel JS, Sparks DL (2009) Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS). Proc Natl Acad Sci 106(38):16124–16128

    Article  CAS  Google Scholar 

  • Glasby GP, Rankin PC, Meylan MA (1979) Manganiferous soil concretions from Hawaii. Pac Sci 33(1):103–115

    Google Scholar 

  • Goldberg ED (1954) Marine geochemistry 1. Chemical scavengers of the sea. J Geol 62(3):249–265

    Article  CAS  Google Scholar 

  • Golden DC, Chen CC, Dixon JB (1987) Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clay Clay Miner 35(4):271–280

    Article  CAS  Google Scholar 

  • Grangeon S, Lanson B, Lanson M, Manceau A (2008) Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study. Mineral Mag 72(6):1197–1209

    Article  CAS  Google Scholar 

  • Grangeon S, Lanson B, Miyata N, Tani Y, Manceau A (2010) Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am Mineral 95(11–12):1608–1616

    Article  CAS  Google Scholar 

  • Grangeon S, Manceau A, Guilhermet J, Gaillot A-C, Lanson M, Lanson B (2012) Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochim Cosmochim Acta 85:302–313

    Article  CAS  Google Scholar 

  • Grangeon S, Lanson B, Lanson M (2014) Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure. Acta Crystallogr B Struct Sci Cryst Eng Mater 70:828–838

    Article  CAS  Google Scholar 

  • Grangeon S, Fernandez-Martinez A, Warmont F, Gloter A, Marty N, Poulain A, Lanson B (2015) Cryptomelane formation from nanocrystalline vernadite precursor: a high energy X-ray scattering and transmission electron microscopy perspective on reaction mechanisms. Geochem Trans 16:12

    Article  CAS  Google Scholar 

  • Grangeon S, Fernandez-Martinez A, Claret F, Marty N, Tournassat C, Warmont F, Gloter A (2017) In-situ determination of the kinetics and mechanisms of nickel adsorption by nanocrystalline vernadite. Chem Geol 459:24–31

    Article  CAS  Google Scholar 

  • Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray NR, Ghosh UC (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(V) sorption behavior. Chem Eng J 172(1):219–229

    Article  CAS  Google Scholar 

  • Han B, Zhang M, Zhao DY, Feng YC (2015) Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles. Water Res 70:288–299

    Article  CAS  Google Scholar 

  • Hochella MF Jr, Moore JN, Putnis CV, Putnis A, Kasama T, Eberl DD (2005) Direct observation of heavy metal-mineral association from the Clark Fork River superfund complex: implications for metal transport and bioavailability. Geochim Cosmochim Acta 69(7):1651–1663

    Article  CAS  Google Scholar 

  • Huot H, Simonnot MO, Watteau F, Marion P, Yvon J, De Donato P, Morel JL (2014) Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur J Soil Sci 65(4):470–484

    Article  CAS  Google Scholar 

  • Isaure M-P, Manceau A, Geoffroy N, Laboudigue A, Tamura N, Marcus MA (2005) Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochim Cosmochim Acta 69(5):1173–1198

    Article  CAS  Google Scholar 

  • Johnson DL, Pilson MEQ (1975) The oxidation of Arsenite in seawater. Environ Lett 8(2):157–171

    Article  CAS  Google Scholar 

  • Jurgensen A, Widmeyer JR, Gordon RA, Bendell-Young LI, Moore MM, Crozier ED (2004) The structure of the manganese oxide on the sheath of the bacterium Leptothrix discophora: an XAFS study. Am Mineral 89(7):1110–1118

    Article  Google Scholar 

  • Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim Cosmochim Acta 59(24):5113–5132

    Article  CAS  Google Scholar 

  • Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198(3–4):331–351

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manag 28(1):215–225

    Article  CAS  Google Scholar 

  • Lafferty BJ, Ginder-Vogel M, Sparks DL (2010a) Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ Sci Technol 44(22):8460–8466

    Article  CAS  Google Scholar 

  • Lafferty BJ, Ginder-Vogel M, Zhu M, Livi KJT, Sparks DL (2010b) Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environ Sci Technol 44(22):8467–8472

    Article  CAS  Google Scholar 

  • Lanson B, Drits VA, Silvester E, Manceau A (2000) Structure of H-exchange hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral 85(5–6):826–838

    Article  CAS  Google Scholar 

  • Lanson B, Drits VA, Feng Q, Manceau A (2002a) Structure of synthetic Na-birnessite: evidence for a triclinic one-layer unit cell. Am Mineral 87(11–12):1662–1671

    Article  CAS  Google Scholar 

  • Lanson B, Drits VA, Gaillot A-C, Silvester E, Plancon A, Manceau A (2002b) Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. Am Mineral 87(11–12):1631–1645

    Article  CAS  Google Scholar 

  • Lanson B, Marcus MA, Fakra S, Panfili F, Geoffroy N, Manceau A (2008) Formation of Zn-Ca phyllomanganate nanoparticles in grass roots. Geochim Cosmochim Acta 72(10):2478–2490

    Article  CAS  Google Scholar 

  • Lefkowitz JP, Elzinga EJ (2015) Impacts of Aqueous Mn(II) on the sorption of Zn(II) by Hexagonal Birnessite. Environ Sci Technol 49(8):4886–4893

    Article  CAS  Google Scholar 

  • Lefkowitz JP, Rouff AA, Elzinga EJ (2013) Influence of pH on the reductive transformation of Birnessite by aqueous Mn(II). Environ Sci Technol 47(18):10364–10371

    Article  CAS  Google Scholar 

  • Lei G, Boström K (1995) Mineralogical control on transition metal distributions in marine manganese nodules. Mar Geol 123(3–4):253–261

    Article  CAS  Google Scholar 

  • Lenoble V, Chabroullet C, al Shukry R, Serpaud B, Deluchat V, Bollinger J-C (2004) Dynamic arsenic removal on a MnO2-loaded resin. J Colloid Interface Sci 280(1):62–67

    Article  CAS  Google Scholar 

  • Lienemann C-P, Taillefert M, Perret D, Gaillard J-F (1997) Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence. Geochim Cosmochim Acta 61(7):1437–1446

    Article  CAS  Google Scholar 

  • Lin K, Liu W, Gan J (2009) Oxidative removal of Bisphenol a by manganese dioxide: efficacy, products, and pathways. Environ Sci Technol 43(10):3860–3864

    Article  CAS  Google Scholar 

  • Liu F, Colombo C, Adamo P, He JZ, Violante A (2002) Trace elements in manganese-Iron nodules from a Chinese Alfisol. Soil Sci Soc Am J 66(2):661–670

    Article  CAS  Google Scholar 

  • Liu J, Makwana V, Cai J, Suib SL, Aindow M (2003) Effects of alkali metal and ammonium Cation templates on Nanofibrous Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2). J Phys Chem B 107(35):9185–9194

    Article  CAS  Google Scholar 

  • Liu CS, Zhang LJ, Li FB, Wang Y, Gao Y, Li XZ, Cao WD, Feng CH, Dong J, Sun LN (2009) Dependence of sulfadiazine oxidative degradation on physicochemical properties of manganese dioxides. Ind Eng Chem Res 48(23):10408–10413

    Article  CAS  Google Scholar 

  • Lopano CL, Heaney PJ, Post JE, Hanson J, Komarneni S (2007) Time-resolved structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. Am Mineral 92(2–3):380–387

    Article  CAS  Google Scholar 

  • Lopano CL, Heaney PJ, Post JE (2009) Cs-exchange in birnessite: reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy. Am Mineral 94(5–6):816–826

    Article  CAS  Google Scholar 

  • Lopano CL, Heaney PJ, Bandstra JZ, Post JE, Brantley SL (2011) Kinetic analysis of cation exchange in birnessite using time-resolved synchrotron X-ray diffraction. Geochim Cosmochim Acta 75(14):3973–3981

    Article  CAS  Google Scholar 

  • Lu ZJ, Lin KD, Gan J (2011) Oxidation of bisphenol F (BPF) by manganese dioxide. Environ Pollut 159(10):2546–2551

    Article  CAS  Google Scholar 

  • Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G (2012) Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chem Eng J 187:45–52

    Article  CAS  Google Scholar 

  • Mahato TH, Prasad GK, Singh B, Batra K, Ganesan K (2010) Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide. Microporous Mesoporous Mater 132(1–2):15–21

    Article  CAS  Google Scholar 

  • Manceau A, Drits VA, Silvester E, Bartoli C, Lanson B (1997) Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. Am Mineral 82(11–12):1150–1175

    Article  CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environ Sci Technol 37(1):75–80

    Article  CAS  Google Scholar 

  • Manceau A, Marcus MA, Tamura N, Proux O, Geoffroy N, Lanson B (2004) Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 68(11):2467–2483

    Article  CAS  Google Scholar 

  • Manceau A, Tommaseo C, Rihs S, Geoffroy N, Chateigner D, Schlegel M, Tisserand D, Marcus MA, Tamura N, Chen Z-S (2005) Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 69(16):4007–4034

    Article  CAS  Google Scholar 

  • Manceau A, Kersten M, Marcus MA, Geoffroy N, Granina L (2007a) Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal. Geochim Cosmochim Acta 71(8):1967–1981

    Article  CAS  Google Scholar 

  • Manceau A, Lanson M, Geoffroy N (2007b) Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 71(1):95–128

    Article  CAS  Google Scholar 

  • Manceau A, Marcus MA, Grangeon S, Lanson M, Lanson B, Gaillot AC, Skanthakumar S, Soderholm L (2013) Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering. J Appl Crystallogr 46(1):193–209

    Article  CAS  Google Scholar 

  • Manceau A, Lanson M, Takahashi Y (2014) Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am Mineral 99(10):2068–2083

    Article  Google Scholar 

  • Marafatto FF, Strader ML, Gonzalez-Holguera J, Schwartzberg A, Gilbert B, Peña J (2015) Rate and mechanism of the photoreduction of birnessite (MnO2) nanosheets. Proc Natl Acad Sci 112(15):4600–4605

    Article  CAS  Google Scholar 

  • Marcus MA, Manceau A, Kersten M (2004) Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim Cosmochim Acta 68(14):3125–3136

    Article  CAS  Google Scholar 

  • Matocha CJ, Elzinga EJ, Sparks DL (2001) Reactivity of Pb(II) at the Mn(III,IV) (Oxyhydr)oxide−water Interface. Environ Sci Technol 35(14):2967–2972

    Article  CAS  Google Scholar 

  • McCann CM, Gray ND, Tourney J, Davenport RJ, Wade M, Finlay N, Hudson-Edwards KA, Johnson KL (2015) Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste. Chemosphere 138:211–217

    Article  CAS  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18:61–73

    Article  CAS  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 439–461

    Google Scholar 

  • Michalkova Z, Komarek M, Sillerova H, Della Puppa L, Joussein E, Bordas F, Vanek A, Vanek O, Ettler V (2014) Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J Environ Manag 146:226–234

    Article  CAS  Google Scholar 

  • Miyata N, Tani Y, Iwahori K, Soma M (2004) Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47(1):101–109

    Article  CAS  Google Scholar 

  • Miyata N, Maruo K, Tani Y, Tsuno H, Seyama H, Soma M, Iwahori K (2006) Production of biogenic manganese oxides by anamorphic Ascomycete Fungi isolated from streambed pebbles. Geomicrobiol J 23(2):63–73

    Article  CAS  Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim Cosmochim Acta 69(1):35–48

    Article  CAS  Google Scholar 

  • Neaman A, Mouélé F, Trolard F, Bourrié G (2004) Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations. Appl Geochem 19(6):973–979

    Article  CAS  Google Scholar 

  • Negra C, Ross DS, Lanzirotti A (2005a) Oxidizing behavior of soil manganese: interactions among abundance, oxidation state, and pH. Soil Sci Soc Am J 69(1):87–95

    CAS  Google Scholar 

  • Negra C, Ross DS, Lanzirotti A (2005b) Soil manganese oxides and trace metals: competitive sorption and microfocused synchrotron X-ray fluorescence mapping. Soil Sci Soc Am J 69(2):353–361

    Article  CAS  Google Scholar 

  • O’Reilly SE, Hochella MF Jr (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487

    Article  CAS  Google Scholar 

  • Ostwald J, Frazer FW (1973) Chemical and mineralogical investigations on deep sea manganese nodules from the Southern Ocean. Mineral Deposita 8(4):303–311

    Article  CAS  Google Scholar 

  • Palumbo B, Bellanca A, Neri R, Roe MJ (2001) Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy. Chem Geol 173(4):257–269

    Article  CAS  Google Scholar 

  • Peacock CL (2009) Physiochemical controls on the crystal-chemistry of Ni in birnessite: genetic implications for ferromanganese precipitates. Geochim Cosmochim Acta 73(12):3568–3578

    Article  CAS  Google Scholar 

  • Peacock CL, Sherman DM (2007a) Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. Am Mineral 92(7):1087–1092

    Article  CAS  Google Scholar 

  • Peacock CL, Sherman DM (2007b) Sorption of Ni by birnessite: equilibrium controls on Ni in seawater. Chem Geol 238(1–2):94–106

    Article  CAS  Google Scholar 

  • Peña J, Kwon KD, Refson K, Bargar JR, Sposito G (2010) Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim Cosmochim Acta 74(11):3076–3089

    Article  CAS  Google Scholar 

  • Plancon A (1981) Diffraction by layer structures containing different kinds of layers and stacking faults. J Appl Crystallogr 14(5):300–304

    Article  CAS  Google Scholar 

  • Plancon A (2002) CALCIPOW: a program for calculating the diffraction by disordered lamellar structures. J Appl Crystallogr 35(3):377

    Article  CAS  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. PNAS 96(7):3447–3454

    Article  CAS  Google Scholar 

  • Post JE, Appleman DE (1994) Crystal structure refinement of lithiophorite. Am Mineral 79(3–4):370–374

    CAS  Google Scholar 

  • Post JE, Bish DL (1988) Rietveld refinement of the todorokite structure. Am Mineral 73(7–8):861–869

    CAS  Google Scholar 

  • Post JE, Heaney PJ (2004) Neutron and synchrotron X-ray diffraction study of the structures and dehydration behaviors of ramsdellite and “groutellite”. Am Mineral 89(7):969–975

    Article  CAS  Google Scholar 

  • Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta Crystallogr B 38(4):1056–1065

    Article  Google Scholar 

  • Potter RM, Rossman GR (1979a) The manganese- and iron-oxide mineralogy of desert varnish. Chem Geol 25(1–2):79–94

    Article  CAS  Google Scholar 

  • Potter RM, Rossman GR (1979b) The tetravalent manganese oxides; identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral 64(11–12):1199–1218

    CAS  Google Scholar 

  • Prasad GK, Mahato TH, Pandey P, Singh B, Suryanarayana MVS, Saxena A, Shekhar K (2007a) Reactive sorbent based on manganese oxide nanotubes and nanosheets for the decontamination of 2-chloro-ethyl ethyl sulphide. Microporous Mesoporous Mater 106(1–3):256–261

    Article  CAS  Google Scholar 

  • Prasad GK, Mahato TH, Singh B, Pandey P, Rao AN, Ganesan K, Vijayraghavan R (2007b) Decontamination of sulfur mustard on manganese oxide nanostructures. AICHE J 53(6):1562–1567

    Article  CAS  Google Scholar 

  • Ramacharyulu P, Prasad GK, Kumar JP, Ganesan K, Singh B, Dwivedi K (2013) Photocatalytic decontamination of sulfur mustard over manganese oxide Nanobelts. Environ Prog Sustain Energy 32(4):1118–1123

    Article  CAS  Google Scholar 

  • Rihs S, Gaillard C, Reich T, Kohler SJ (2014) Uranyl sorption onto birnessite: a surface complexation modeling and EXAFS study. Chem Geol 373:59–70

    Article  CAS  Google Scholar 

  • Ross SJ, Franzmeier DP, Roth CB (1976) Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci Soc Am J 40(1):137–143

    Article  CAS  Google Scholar 

  • Rubert, Pedersen JA (2006) Kinetics of Oxytetracycline reaction with a hydrous manganese oxide. Environ Sci Technol 40(23):7216–7221

    Article  CAS  Google Scholar 

  • Russo F, Johnson CJ, Johnson CJ, McKenzie D, Aiken JM, Pedersen JA (2009) Pathogenic prion protein is degraded by a manganese oxide mineral found in soils. J Gen Virol 90(1):275–280

    Article  CAS  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767

    Article  Google Scholar 

  • Siegel MD, Turner S (1983) Crystalline Todorokite associated with biogenic debris in manganese nodules. Science 219(4581):172–174

    Article  CAS  Google Scholar 

  • Simanova AA, Kwon KD, Bone SE, Bargar JR, Refson K, Sposito G, Peña J (2015) Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II). Geochim Cosmochim Acta 164:191–204

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Song ZG, Lian F, Yu ZH, Zhu LY, Xing BS, Qiu WW (2014) Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem Eng J 242:36–42

    Article  CAS  Google Scholar 

  • Šťastný M, Štengl V, Henych J, Tolasz J, Vomáčka P, Ederer J (2016) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51(5):2634–2642

    Article  CAS  Google Scholar 

  • Stengl V, Kralova D, Oplustil F, Nemec T (2012) Mesoporous manganese oxide for warfare agents degradation. Microporous Mesoporous Mater 156:224–232

    Article  CAS  Google Scholar 

  • Sullivan LA, Koppi AJ (1992) Manganese oxide accumulations associated with some soil structural pores.I. morphology, composition and genesis. Aust J Soil Res 30(4):409–427

    Article  CAS  Google Scholar 

  • Sunda WG, Kieber DJ (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367(6458):62–64

    Article  CAS  Google Scholar 

  • Takahashi Y, Manceau A, Geoffroy N, Marcus MA, Usui A (2007) Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Acta 71(4):984–1008

    Article  CAS  Google Scholar 

  • Tan W-F, Liu F, Li Y-H, Hu H-Q, Huang Q-Y (2006) Elemental composition and geochemical characteristics of Iron-manganese nodules in Main soils of China. Pedosphere 16(1):72–81

    Article  CAS  Google Scholar 

  • Tani Y, Miyata N, Iwahori K, Soma M, Tokuda S-i, Seyama H, Theng BKG (2003) Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River system, Shizuoka, Japan. Appl Geochem 18(10):1541–1554

    Article  CAS  Google Scholar 

  • Taylor RM (1968) The association of manganese and cobalt in soils – further observations. J Soil Sci 19(1):77–80

    Article  CAS  Google Scholar 

  • Taylor R, McKenzie R, Norrish K (1964) The mineralogy and chemistry of manganese in some Australian soils. Aust J Soil Res 2(2):235–248

    Article  CAS  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32(1):287–328

    Article  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13(9):421–428

    Article  CAS  Google Scholar 

  • Thresh M (1902) Manganiferous nodules in the boulder-clay of Essex. Essex Naturalist 12:137–139

    CAS  Google Scholar 

  • Tiller KG (1963) Weathering and soil formation on dolerite in Tasmania with particular reference to several trace elements. Aust J Soil Res 1(1):74–90

    Article  Google Scholar 

  • Tripathy SS, Kanungo SB (2005) Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of delta-MnO2 and amorphous FeOOH. J Colloid Interface Sci 284(1):30–38

    Article  CAS  Google Scholar 

  • Turner S, Post JE (1988) Refinement of the substructure and superstructure of romanechite. Am Mineral 73(9–10):1155–1161

    CAS  Google Scholar 

  • Usui A, Mita N (1995) Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clay Clay Miner 43(1):116–127

    Article  CAS  Google Scholar 

  • Uzochukwu GA, Dixon JB (1986) Manganese oxide minerals in nodules of two soils of Texas and Alabama. Soil Sci Soc Am J 50(5):1358–1363

    Article  CAS  Google Scholar 

  • Verma M, Chandra R, Gupta VK (2016) Decontamination of 2-chloro ethyl ethyl sulphide and dimethyl methyl phosphonate from aqueous solutions using manganese oxide nanostructures. J Mol Liq 215:285–292

    Article  CAS  Google Scholar 

  • Villalobos M, Lanson B, Manceau A, Toner B, Sposito G (2006) Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am Mineral 91(4):489–502

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2009) Mineralogy and geochemistry of manganese: a review of publications. Eurasian Soil Sci 42(10):1170–1178

    Article  Google Scholar 

  • Wang Y, Feng X, Villalobos M, Tan W, Liu F (2012) Sorption behavior of heavy metals on birnessite: relationship with its Mn average oxidation state and implications for types of sorption sites. Chem Geol 292–293:25–34

    Article  CAS  Google Scholar 

  • Wang HW, Zhang DY, Mou S, Song W, Al-Misned FA, Mortuza MG, Pan XL (2015a) Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide. Chemosphere 136:102–110

    Article  CAS  Google Scholar 

  • Wang MC, Sheng GD, Qiu YP (2015b) A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int J Environ Sci Technol 12(5):1719–1726

    Article  CAS  Google Scholar 

  • Weaver RM, Hochella MF (2003) The reactivity of seven Mn-oxides with Cr3+ aq: a comparative analysis of a complex, environmentally important redox reaction. Am Mineral 88(11–12):2016–2027

    Article  CAS  Google Scholar 

  • Webb SM, Tebo BM, Bargar JR (2005) Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. Am Mineral 90(8–9):1342–1357

    Article  CAS  Google Scholar 

  • Wegorzewski AV, Kuhn T, Dohrmann R, Wirth R, Grangeon S (2015) Mineralogical characterization of individual growth structures of Mn-nodules with different Ni plus Cu content from the Central Pacific Ocean. Am Mineral 100(11–12):2497–2508

    Article  Google Scholar 

  • Xie WB, Liang QQ, Qian TW, Zhao DY (2015) Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles. Water Res 70:485–494

    Article  CAS  Google Scholar 

  • Xu L, Xu C, Zhao M, Qiu Y, Sheng GD (2008) Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Res 42(20):5038–5044

    Article  CAS  Google Scholar 

  • Xu H, Chen T, Konishi H (2010) HRTEM investigation of trilling todorokite and nano-phase Mn-oxides in manganese dendrites. Am Mineral 95(4):556–562

    Article  CAS  Google Scholar 

  • Yu ZH, Zhou L, Huang YF, Song ZG, Qiu WW (2015) Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. J Environ Manag 163:155–162

    Article  CAS  Google Scholar 

  • Zhang H, Huang C-H (2005) Oxidative transformation of Fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ Sci Technol 39(12):4474–4483

    Article  CAS  Google Scholar 

  • Zhang M, Karathanasis AD (1997) Characterization of iron-manganese concretions in Kentucky Alfisols with perched water tables. Clay Clay Miner 45(3):428–439

    Article  CAS  Google Scholar 

  • Zhao W, Cui H, Liu F, Tan W, Feng X (2009) Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic birnessites. Clay Clay Miner 57(5):513–520

    Article  CAS  Google Scholar 

  • Zhao H, Zhu M, Li W, Elzinga EJ, Villalobos M, Liu F, Zhang J, Feng X, Sparks DL (2016) Redox reactions between Mn(II) and hexagonal Birnessite change its layer symmetry. Environ Sci Technol 50(4):1750–1758

    Article  CAS  Google Scholar 

  • Zhu M, Ginder-Vogel M, Sparks DL (2010) Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure. Environ Sci Technol 44(12):4472–4478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.G. acknowledges funding by the French national research agency (ANR-14-CE01-0006) and thanks Julie Philibert for fruitful discussions. Special thanks are due to Patrick Charbonnier (ArcelorMittal) and Hermine Huot (Sun Yat-Sen University) who provided the pictures presented in Fig. 7.7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylvain Grangeon , Philippe Bataillard or Samuel Coussy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grangeon, S., Bataillard, P., Coussy, S. (2020). The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. In: van Hullebusch, E., Huguenot, D., Pechaud, Y., Simonnot, MO., Colombano, S. (eds) Environmental Soil Remediation and Rehabilitation. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-40348-5_7

Download citation

Publish with us

Policies and ethics