Skip to main content

Free Product Recovery of Non-aqueous Phase Liquids in Contaminated Sites: Theory and Case Studies

  • Chapter
  • First Online:
Environmental Soil Remediation and Rehabilitation

Abstract

Organic liquids with low water solubility are generally described as Non-Aqueous Phase Liquids (NAPLs). They penetrate the soil subsurface as oily liquids (free products), do not mix readily with water, and therefore flow independently from groundwater. They can be divided into two main classes: light NAPLs (LNAPLs), such as refined petroleum products, which are lighter than water; and dense NAPLs (DNAPLs), such as trichloroethylene, which are heavier than water. NAPLs may dissolve in the aqueous phase or evaporate in the gas phase. Due to their toxicity and widespread occurrence, they generate serious environmental and health problems. Most contaminants migrate when they are present as free-phase. Therefore, removing free products is of primary importance for the remediation of any contaminated site. Conventional NAPL remediation consists of pumping the free product until residual saturation is reached (i.e., no more NAPLs can be recovered). This residual saturation may impact gases (vapor phase) or groundwater (dissolved phase) for several years. Decreasing this residual saturation (i.e., increasing the recovery yield of free product) may contribute to reducing: (1) contaminants dissolved into water, (2) the duration of the remediation operation, (3) the extent of plumes and related contaminant concentration levels, and consequently, (4) remediation costs. In this chapter, we present conventional technologies for free product recovery from the practical and theoretical viewpoints: pump-and-treat, skimming, bioslurping, and recovery trenches. This chapter describes the advantages and limitations of these techniques, and discusses innovative technologies such as thermal and chemical enhancement (i.e., surfactants), which aim to increase free product recovery yields and rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah W, Buckley J, Carnegie A, Edwards J, Fordham E, Graue A, Habashy T, Seleznev N, Signer C, Hussain H, Montaron B, Ziauddin M (2007) Fundamentals of wettability. Oil Review:44–61

    Google Scholar 

  • Abriola L, Drummond C, Hahn E, Hayes K, Kibbey T, Lemke L, Pennell K, Petrovskis E, Ramsburg C, Rathfelder K (2005) Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the bachman road site. 1. Site characterization and test design. Environ Sci Technol 39(6):1778–1790

    Article  CAS  Google Scholar 

  • ADEME (2009) Traitabilité des sols pollués – Guide méthodologique pour la sélection des techniques et l’évaluation de leurs performances – Cahier des charges. ADEME edn, Agence de l’Environnement et de la Maîtrise de l’Energie, Agence de l’Environnement et de la Maîtrise de l’Energie – 20, avenue du Grésillé – BP 90406 – 49004 Angers Cedex 01. 246 p. http://www.ademe.fr/sites/default/files/assets/documents/traitabilite-sols-pollues-guide-methodologique-evaluation-2008-rapport-final-3.pdf

  • ADEME, Ernst & Young (2014) Taux d’utilisation et coûts des différentes techniques et filières de traitement des sols et des eaux souterraines polluées en France – Synthèse des données 2012. ADEME edn, Agence de l’Environnement et de la Maîtrise de l’Energie, Agence de l’Environnement et de la Maîtrise de l’Energie – 20, avenue du Grésillé – BP 90406 – 49004 Angers Cedex 01. 148 p. http://www.ademe.fr/taux-dutilisation-couts-differentes-techniques-filieres-traitement-sols-eaux-souterraines-pollues-france

  • ADEME, Provademse, Ginger/Burgeap, Enoveo and Suez (2018) ESTRAPOL – Essais de Traitabilité de la Pollution des sites, sols et des eaux souterraines. Intersol, Paris

    Google Scholar 

  • Alexandra R, Gerhard J, Kueper B (2012) Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization. Groundwater 50:765–774

    Article  CAS  Google Scholar 

  • Baker R, LaChance J, Heron G (2006) In-pile thermal desorption of PAHs, PCBs and dioxins/furans in soil and sediment. Land Contam Reclamat 14:620–624

    Article  Google Scholar 

  • Bayer P, Finkel M, Teutsch G (2002) Reliability of hydraulic performance and cost estimates of barrier-supported pump-and-treat systems in heterogeneous aquifers. IAHS-AISH Publication 277:331–338

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York, NY. Number 9780486656755; 800 p

    Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, NY. Number 978-0486453552; 569 p

    Google Scholar 

  • Benremita H (2002) Approche expérimentale et simulation numérique du transfert de solvants chlorés en aquifère alluvial contrôlé. PhD thesis, Université Louis Pasteur de Strasbourg, Strasbourg, 282 p

    Google Scholar 

  • Berglund S, Cvetkovic V (1995) Pump-and-treat remediation of heterogeneous aquifers: effects of rate-limited mass transfer. Groundwater 33:675–685

    Article  CAS  Google Scholar 

  • Birak PS, Miller CT (2009) Dense non-aqueous phase liquids at former manufactured gas plants: challenges to modeling and remediation. J Contam Hydrol 105:81–98

    Article  CAS  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper 3. Civil Engineering Department, Colorado State University, Fort Collins

    Google Scholar 

  • Brooks M, Annable M, Rao P, Hatfield K, Jawitz J, Wise W, Wood A, Enfield C (2004) Controlled release, blind test of DNAPL remediation by ethanol flushing. J Contam Hydrol 69(3–4):281–297

    Article  CAS  Google Scholar 

  • Brown D, Gupta L, Kim T-H, Keith Moo-Young H, Coleman A (2006) Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the Eastern United States. Chemosphere 65:1562–1569

    Article  CAS  Google Scholar 

  • Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASABE 10:400–404

    Article  Google Scholar 

  • Burdine NT (1953) Relative permeability calculations from pore size distribution data. Pet Trans AIME 198:71–78

    Google Scholar 

  • Carey GR, McBean, EA (2010a) A mass balance approach for estimating DNAPL source remediation timeframe. In: Proceedings of the 2010 RPIC Federal Contaminated Sites National Workshop, Montréal, Québec, Canada

    Google Scholar 

  • Carey GR, McBean, EA (2010b) Back-diffusion and discount rate implications for DNAPL remediation strategies. In: Proceedings of the 2010 RPIC Federal Contaminated Sites National Workshop, Montréal, Québec, Canada

    Google Scholar 

  • Cazaux D, Colombano S, Joubert A, Dumestre A, Lecuelle G (2014) Optimized physical recovery of DNAPL using upwelling technique and geostatistical analysis at large field scale. In: Ninth international conference on remediation of chlorinated and recaclitrant compounds. Battelle Press, Columbus, OH, Number A1; p 5

    Google Scholar 

  • Charbeneau R (2007) LNAPL distribution and recovery model (LDRM), vol 1: Distribution and recovery of petroleum hydrocarbon liquids in porous media. Technical report API Publication 4760, American Petroleum Institute, Washington, DC, 68 p

    Google Scholar 

  • Charbeneau R, Beckett RG (2007) LNAPL distribution and recovery model (LDRM), vol 2: User and parameter selection guide. Technical report API Publication 4760, American Petroleum Institute, Washington, DC, 115 p

    Google Scholar 

  • Chen J, Hopmans J, Grismer M (1999) Parameter estimation of two-fluid capillary pressure – saturation and permeability functions. Adv Water Resour 22(5):479–493

    Article  CAS  Google Scholar 

  • Chen Z, Huan G, Ma Y (2006) Computational methods for multiphase flows in porous media. Society for Industrial and Applied Mathematics, Philadelphia, PA. Number 978-0-898716-06-1; 531 p

    Book  Google Scholar 

  • Childs J, Acosta E, Knox R, Harwell J, Sabatini D (2004) Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems. J Contam Hydrol 71(1–4):27–45

    Article  CAS  Google Scholar 

  • Cohen R, Mercer J (1993) DNAPL site evaluation. Technical report, Edited by USEPA Office of Research and Development

    Google Scholar 

  • Colombano S, Havryliuk T (2016) Remediation of hydrocarbon polluted military site, Unit A-3482, Kiev, Ukraine. The NATO science for peace and security programme. North Atlantic Treaty Organization, Number SPS 984585

    Google Scholar 

  • Colombano S, Hiez D (2009) La démarche du Plan de Gestion et la gestion en l’absence de valeurs VCI-VDSS/Exemple : fuite d’hydrocarbures flottants. Journée Technique d’information et de retour d’expérience de la gestion des sols pollués. Ministère du Développement Durable, Paris, France

    Google Scholar 

  • Colombano S, Saada A, Guerin V, Bataillard P, Bellenfant G, Beranger S, Hubé D, Blanc C, Zornig C, Girardeau I (2010) Quelles techniques pour quels traitements – Analyse coût-bénéfices. Document du Brgm BRGM/RP – 58609 FR, BRGM – French Geological Survey, 3, avenue Claude Guillemin, 45 060 – Orléans Cedex 2, France. 403 p

    Google Scholar 

  • Colombano S, Davarzani H, van Hullebusch E, Ignatiadis I, Huguenot D, Guyonnet D, Rouyer F, Deparis J (2018a) Polluted soil remediation of heavy chlorinated solvents in saturated porous media: effects of thermal and chemical enhancements. In: Eleventh international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, Number B; p 60

    Google Scholar 

  • Colombano S, Joubert A, Cazaux D, Maire J, Fatin-Rouge N, Marion C, Kaifas D, Klein P, Triger A, Dumestre A, Giraud Q, Paris B, Deparis J, Baillieux P (2018b) Le projet SILPHES – Solutions Innovantes de Lutte contre les Produits Halogénés dans les Eaux Souterraines : 1. Quid de l’amélioration de la récupération physique d’un produit pur en aquifère alluvial? In: U. ADEME, E. Network Members (eds) Les rendez-vous du réseau ESSORT – Solutions de traitement des sites et sols pollués. ADEME, UPDS, and ESSORT Network Members, Paris

    Google Scholar 

  • Connor J, Newell C, Wilson D (1989) Assessment, field testing, conceptual design for managing dense nonaqueous phase liquids (DNAPL) at a superfund site. In: Proceedings of petroleum hydrocarbons and organic chemicals in ground water: prevention, detection, and restoration, vol 1. A conference and exposition. The Westin Galleria, Houston, TX, pp 519–533

    Google Scholar 

  • Craig FF (1971) The reservoir engineering aspects of waterflooding. Society of Petroleum Engineers of AIME, New York, NY. Number 978-0-89520-202-4; 142 p

    Google Scholar 

  • Crichlow HB (1977) Modern reservoir engineering – a simulation approach. Prentice Hall, Englewood Cliffs, NJ. Number 0135974682; 354 p

    Google Scholar 

  • Dash Z, Robinson B, Zyvoloski G (1997) Software requirements, design and verification for the FEHM application. A finite element heat and mass transfer code. Los Alamos National Laboratory, Los Alamos, NM. Number LA-13305-MS; 206 p

    Book  Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn. Academic Press, San Diego, CA. Number 978-0-12-223651-8; 574 p

    Google Scholar 

  • Dwarakanath V, Kostarelos K, Pope G, Shotts G, Wade W (1999) Anionic surfactant remediation of soil columns contaminated by nonaqueous phase liquids. J Contam Hydrol 38(4):465–488

    Article  CAS  Google Scholar 

  • Falta R, Pruess K, Finsterle S, Battistelli A (1995) T2VOC user’s guide. Lawrence Berkeley National Laboratory, Berkeley, CA. Number LBL-36400; 155 p

    Book  Google Scholar 

  • Falta R, Rao P, Basu N (2005a) Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. J Contam Hydrol 78(4):259–280

    Article  CAS  Google Scholar 

  • Falta R, Basu N, Rao P (2005b) Assessing impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. J Contam Hydrol 79(1–2):45–66

    Article  CAS  Google Scholar 

  • Feenstra S, Cherry JA (1988) Subsurface contamination by dense non-aqueous phase liquids (DNAPL) chemicals. In: International groundwater symposium, International Association of Hydrogeologists, Halifax, Nova Scotia, Canada

    Google Scholar 

  • Ferry JP, Dougherty PJ (1986) Occurrence and recovery of a DNAPL in a low-yielding bedrock aquifer. In: Petroleum hydrocarbons and organic chemicals in ground water – prevention, detection and restoration. Proceedings of the NWWA/API conference, Houston, TX, USA, pp 722–733

    Google Scholar 

  • Fetter CW (1994) Contaminant hydrogeology. Prentice-Hall, Upper Slade River, NJ,. Number 0130882399; 598 p

    Google Scholar 

  • Freeze RA, McWhorter DB (1997) A framework for assessing risk reduction due to DNAPL mass removal from low-permeability soils. Groundwater 35(1):111–123

    Article  CAS  Google Scholar 

  • FRTR (2007) Remediation technologies screening matrix and reference guide, Version 4.0

    Google Scholar 

  • Gardner WR (1958) Some steady state solutions of unsaturated moisture flow equations with application to evaporation from water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  • Gerhard J, Kueper B, Hecox G, Schwarz E (2001) Site-specific design for dual phase recovery and stabilization of pooled DNAPL. Ground Water Monit Remediat 21(2):71–88

    Article  CAS  Google Scholar 

  • Giraud Q, Gonçalvès J, Paris B, Joubert A, Triger A, Colombano S, Cazaux D (2016) Multiphase flow modelling of a dnapl pumping: case study of hexachlorobutadiene in a shallow alluvial aquifer. In: I. A. of Hydrogeologists (ed) Proceedings of the 43rd international association of hydrogeologists congress. International Association of Hydrogeologists, Montpellier., Number Abstract no 1442, p 305

    Google Scholar 

  • Grant GP (2005) The evolution of complex DNAPL releases: rates of migration and dissolution. PhD thesis, The University of Edinburgh, Edinburgh, Scotland. 429 p

    Google Scholar 

  • Grant GP, Gerhard JI (2007a) Simulating the dissolution of a complex dense nonaqueous phase liquid source zone: 1. Model to predict interfacial area. Water Resour Res 43:W12410

    Google Scholar 

  • Grant GP, Gerhard JI (2007b) Simulating the dissolution of a complex dense nonaqueous phase liquid source zone: 2. Experimental validation of an interfacial area-based mass transfer model. Water Resour Res 43:W12409

    Google Scholar 

  • Guarnaccia J, Pinder G, Fishman M (1997) NAPL: simulator documentation. EPA project sumary (EPA/600/8R-97/102)

    Google Scholar 

  • Gwo J, Jardine P, Yeh G, Wilson G (1995) MURT user’s guide: a hybrid Lagrangian-Eulerian finite element model of multiple pore region solute transport through variably saturated subsurface media. Oak Ridge National Laboratory, Oak Ridge, TN. Number ORNL/GWPO-015; 128 p

    Google Scholar 

  • Hampton D, Barrett T, Nayyar H, O’Connell T (1992) Hydrophobic gravel packs for product monitoring and recovery wells. In: Proceedings national outdoor action conference, National Ground Water Association, Dublin, OH, USA, pp 581–595

    Google Scholar 

  • Harendra S, Vipulanandan C (2011) Solubilization and degradation of perchloroethylene (PCE) in cationic and nonionic surfactant solutions. J Environ Sci 23(8):1240–1248

    Article  CAS  Google Scholar 

  • Harkness M, Konzuk RL (2014) Chapter 16: cost analyses for remedial options. In: Chlorinated solvent source zone remediation. Springer, SERDP ESTCP Environmental Remediation Technology, New York, NY, Number 978-1-4614-6921-6; 713 p

    Google Scholar 

  • Helmig R, Braun C, Emmert M (1994) MUFTE: a numerical model for simulation of multiphase flow processes in porous and fractured porous media. Number Program Documentation (HG-208). Technical report 94/3, Institut für Wasserbau, Universität Stuttgart, Stuttgart, Germany

    Google Scholar 

  • Heron G, van Zutphen M, Christensen T, Enfield C (1998) Soil heating for enhanced remediation of chlorinated solvents: a laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene. Environ Sci Technol 32:1474–1481

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York, NY. Number 9780824793975; 672 p

    Google Scholar 

  • Holzmer F, Pope G, Yeh L (2000) Surfactant-enhanced aquifer remediation of PCE DNAPL in low-permeability sand. In: Treating dense nonaqueous-phase liquids (DNAPLs): remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, pp 211–218

    Google Scholar 

  • Huling SG, Weaver JW (1991) Ground water issue – dense nonaqueous phase liquids. Technical report EPA/540/4-91-002. U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington, DC, USA, 21 p.

    Google Scholar 

  • Huling SG, Weaver JW (1996) Chapter 5: Dense nonaqueous phase liquids. In: Boulding R (ed) EPA environmental assessment sourcebook. Ann Arbor Press, Chelsea, MI. Number 9781575040097; 400 p

    Google Scholar 

  • Huntley D, Beckett GD (2002) Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. J Contam Hydrol 59(1–2):3–26

    Article  CAS  Google Scholar 

  • Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic Press, New York, NY. Number 978-0-12-363480-1; 473 p

    Google Scholar 

  • Huyakorn P, Panday S, Wu Y (1994) A three dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 1. Formulation. J Contam Hydrol 16:109–130

    Article  CAS  Google Scholar 

  • Hyman M, Dupont RR (2001) Groundwater and soil remediation: process design and cost estimating of proven technologies. American Society of Civil Engineers (ASCE) Press, Reston, VA. Number 978-0-7844-0427-0; 534 p

    Book  Google Scholar 

  • Illangasekare TH, Reible DD (2000) Pump-and-treat for remediation and plume containment: applications, limitations, and relevant processes. In: Kaluarachchi JJ (ed) Groundwater contamination by organic pollutants: analysis and remediation, ASCE manuals and reports on engineering practice, vol 100. American Society of Civil Engineers, Reston, VA, pp 79–119

    Chapter  Google Scholar 

  • Imhoff P, Jaffé P, Pinder G (1993) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30(2):307–320

    Article  Google Scholar 

  • ITRC (2004) Strategies for monitoring the performance of DNAPL source zone remedies. Technical/regulatory guidelines, Interstate Technology & Regulatory Council, Washington, DC. 205 p

    Google Scholar 

  • Jawitz J, Sillan R, Annable M, Rao P, Warner K (2000) In situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environ Sci Technol 34:3722–3729

    Article  CAS  Google Scholar 

  • Joubert A, Invernizzi T, Dumestre A, Cazaux D, Colombano S, Deparis J, Baillieux P, Kaifas D, Klein P, Triger A, Fatin-Rouge N, Maire J, Giraud Q, Paris B (2016) Caractérisation, optimisation et suivi géophysique du pompage de phase dense (DNAPL) en milieu aquifère. Conférence UPDS – POLLUTEC, Lyon, Paris

    Google Scholar 

  • Katyal A, Kaluarachchi J, Parker J (1991) MOFAT: a two dimensional finite element program for multiphase flow and multicomponent transport – program documentation ans user’s guide. US Environmental Protection Agency, Ada, OK. Number EPA/600/2-91/020; 121 p

    Google Scholar 

  • Khan F, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kosugi K (1994) Three-parameter lognormal distribution model for soil water retention. Water Resour Res 30(4):891–901

    Article  Google Scholar 

  • Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32(9):2697–2703

    Article  Google Scholar 

  • Kueper B, Frind E (1992) Numerical modelling of multiphase/multicomponent flow and transport in porous media. In: Proceedings of the international conference on subsurface contamination by immiscible fluids

    Google Scholar 

  • Kueper B, Gerhard J (2014) Chapter 8: Hydraulic displacement of dense nonaqueous phase liquids. In: Kueper BH, Stroo HF, Vogel CM, Ward CH (eds) Chlorinated solvent source zone remediation. Springer, SERDP ESTCP Environmental Remediation Technology, New York, NY. Number 978-1-4614-6921-6; 713 p

    Chapter  Google Scholar 

  • Kueper B, Wealthall G, Smith J, Leharne S, Lerner D (2003) An illustrated handbook of DNAPL transport and fate in the subsurface. U.K. Environment Agency, Bristol. Number 1844320669; 67 p

    Google Scholar 

  • Kueper B, Shi J, Gefell M (2008) Hydraulic gradient magnification in NAPL pools: implications for MGP NAPL vertical mobility. In: Sixth international conference, remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, Number K-004

    Google Scholar 

  • Laha S, Tansel B, Ussawarujikulchaib A (2009) Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manag 90(1):95–100

    Article  CAS  Google Scholar 

  • Lahvis and Baehr (1997) Documentation of R-UNSAT: a computer model for the simulation of reactive, multispecies transport in the unsaturated zone. U.S. Geological Survey, West Trenton, NJ. Number 97.630; 104 p

    Google Scholar 

  • Lake (1989) Enhanced oil recovery. Prentice Hall, Old Tappan, NJ. Number 0132816016 9780132816014; 550 p

    Google Scholar 

  • Lappala E, Healy R, Weeks E (1987) Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media. In: Water resources investigation. U.S. Geological Survey, Denver, CO, USA, Number 83-4099-4184; 193 p

    Google Scholar 

  • Lecomte P (1998) Les sites pollués: Traitement des sols et des eaux souterraines, 2nd edn. Lavoisier, Cachan. 204 p

    Google Scholar 

  • Lemière B, Seguin J-J, Le Guern C, Guyonnet D, Baranger P, Saada A, Darmendrail D, Conil P, Bodénan F, Fauconnier D, Hubé D, Colombano S (2008) Guide sur le comportement des polluants dans les sols et les nappes. Document du Brgm 300 ISBN 2-7159-0912-8. BRGM – French Geological Survey, Orléans Cedex 2, France, 155 p

    Google Scholar 

  • Lenhard R, Oostrom M, White M (1995) Modeling fluid flow and transport in variably saturated porous media with the STOMP simulator: verification and validation exercises. Adv Water Resour 18(6):365–373

    Article  Google Scholar 

  • Liu Y, Hopmans J, Grismer M, Chen J (1998) Direct estimation of air-oil and oil-water capillary pressure and permeability relations from multi-step outflow experiments. J Contam Hydrol 32(3–4):223–245

    Article  CAS  Google Scholar 

  • Londergan J, Meinardus H, Mariner P, Jackson R, Brown C, Dwarakanath V, Pope G, Ginn J, Taffinder S (2001) Dnapl removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Ground Water Monit Remediat 21(4):57–67

    Article  Google Scholar 

  • Luckner C, van Genuchten M, Nielsen D (1989) A consistent set of parametric models for two-phase flow of immiscible fluids in the subsurface. Water Resour Res 25(10):2187–2193

    Article  CAS  Google Scholar 

  • Lyman W, Reehl W, Rosenblatt D (1982) Handbook of chemical property estimation methods–environmental behavior of organic compounds. McGraw-Hill, New York

    Google Scholar 

  • Mackay D, Cherry J (1989) Groundwater contamination: pump-and-treat remediation. Environ Sci Technol 23:630–636

    Article  CAS  Google Scholar 

  • Maire J, Fatin-Rouge N (2017) Surfactant foam flushing for in situ removal of dnapls in shallow soils. J Hazard Mater 321:247–255

    Article  CAS  Google Scholar 

  • Maire J, Coyer A, Fatin-Rouge N (2015) Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. J Hazard Mater 299:630–638

    Article  CAS  Google Scholar 

  • Maire J, Coyer A, Fatin-Rouge N, Colombano S, Giraud Q, Paris B, Dumestre A, Joubert A, Klein P-Y, Triger A, Cazaux D (2016) Surfactant foam technology for in situ remediation of heavy chlorinated-compound DNAPLs. Tenth international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH

    Google Scholar 

  • Maire J, Joubert A, Kaifas D, Invernizzi T, Mardue J, Colombano S, Cazaux D, Marion C, Klein P, Dumestre A, Fatin-Rouge N (2018) Assessment of flushing methods for the removal of heavy chlorinated compounds dnapl in an alluvial aquifer. Sci Total Environ 612:1149–1158

    Article  CAS  Google Scholar 

  • Marseille F, Le Hecho I (2004) ASTRES Banque de données – 3 ème version

    Google Scholar 

  • McDade J, McGuire T, Newell C (2005) Analysis of DNAPL source-depletion costs at 36 field sites. Remediat J 15(2):9–18

    Article  Google Scholar 

  • McGuire T, McDade J, Newell C (2006) Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monit Remediat 26(1):73–84

    Article  CAS  Google Scholar 

  • McLaren S, Worboys M, Speake O, Mantell P (2009) Ex-situ thermally enhanced coal tar recovery – a low carbon option. Green remediation conference, Copenhagen, Denmark

    Google Scholar 

  • MEEM (2017a) Introduction à la méthodologie nationale de gestion des sites et sols pollués. Ministère de l’Environnement, de l’Energie et de la Mer, en charge des relations internationales sur le climat, Direction Générale de la Prévention des Risques, Bureau du Sol et du Sous-Sol, 27 p

    Google Scholar 

  • MEEM (2017b) Méthodologie nationale de gestion des sites et sols pollués. Ministère de l’Environnement, de l’Energie et de la Mer, en charge des relations internationales sur le climat, Direction Générale de la Prévention des Risques, Bureau du Sol et du Sous-Sol, 128 p

    Google Scholar 

  • MEEM (2017c) Note du 19 avril 2017 relative aux sites et sols pollués – Mise à jour des textes méthodologiques de gestion des sites et sols pollués de 2007. Ministère de l’Environnement, de l’Energie et de la Mer, en charge des relations internationales sur le climat, 3 p

    Google Scholar 

  • Mercer J, Cohen R (1990) A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J Contam Hydrol 6(2):107–163

    Article  CAS  Google Scholar 

  • Miller C, Poirier-McNeill M, Mayer A (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26(11):2783–2796

    Article  Google Scholar 

  • Miller C, Christakos G, Imhoff P, McBride J, Pedit J, Trangenstein J (1998) Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Adv Water Resour 21(2):77–120

    Article  Google Scholar 

  • Moyers J, Nichols J, Whitlock I (1997) Disadvantages of Pum-pand-treat remediation. Groundwater pollution primer, Virginia Tech University, VA

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Nadim F, Hoag G, Liu S, Carley R, Zack P (2000) Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J Pet Sci Eng 26(1–4):169–178

    Article  CAS  Google Scholar 

  • Nambi I, Powers S (2003) Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 39:1030–1040

    Article  CAS  Google Scholar 

  • Naval Facilities Engineering Service Center (1998) Application guide for bioslurping. Volume I, Summary of the principles and practices of bioslurping. Technical Report TM-2300-ENV, Port Hueneme, CA, 16 p

    Google Scholar 

  • Newell C, Adamson D (2005) Planning-level source decay models to evaluate impact of source depletion on remediation timeframe. Remediation 15(4):27–47

    Article  Google Scholar 

  • Nitao J (1996) Reference manual for the NUFT flow and transport code. Lawrence Livermore National Laboratory, Livermore, CA. Number UCRL-ID-113520; 52 p

    Google Scholar 

  • Nsir K (2009) Etude expérimentale et numérique de la migration de polluants non miscibles dans un milieu poreux saturaturé a l’échelle de Darcy. PhD thesis, Université de Strasbourg, Strasbourg, France, 189 p

    Google Scholar 

  • O’Carroll D, Bradford S, Abriola L (2004) Infiltration of PCE in a system containing spatial wettability variations. J Contam Hydrol 73:39–63

    Article  CAS  Google Scholar 

  • Pankow J, Cherry J (1996) Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation. Waterloo Press, Portland, OR. Number 978-0964801417; 525 p

    Google Scholar 

  • Peargin T (1995) Vacuum-enhanced recovery: theory. Undergr Tank Technol Update 9(4):2–7

    Google Scholar 

  • Pennell K, Pope G, Abriola L (1996) Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ Sci Technol 30:1328–1335

    Article  CAS  Google Scholar 

  • Pennell K, Capiro N, Walker D (2014) Chapter 11: Surfactant and cosolvent flushing. In: Kueper BH, Stroo HF, Vogel CM, Ward CH (eds) Chlorinated solvent source zone remediation. Springer, SERDP ESTCP Environmental Remediation Technology, New York, NY. Number 978-1-4614-6921-6; 713 p

    Google Scholar 

  • Philippe N, Davarzani H, Marcoux M, Colombano S, Kaifas D, Triger A, Klein P-Y (2017) Thermal enhancement of coal tar pumping in saturated porous media. In: AquaConSoil: Sustainable Use and Management of Soil, Sediment and Water Resources 14th International Conference, Deltares and BRGM, Lyon, France

    Google Scholar 

  • Pickell J, Swanson B, Hickman W (1966) Application of air-mercury and oil-air capillary pressure data in the study of pore structure and fluid distribution. Soc Pet Eng J 6(1):55–61

    Article  CAS  Google Scholar 

  • Pinder G, Abriola L (1986) On the simulation of nonaqueous phase organic compounds in the subsurface. Water Resour Res 22(9):109S–119S

    Article  Google Scholar 

  • Poiseuille J (1838) Ecoulement des Liquides: Société Philomatique de Paris. Extraits des Procès-Verbaux des Séances Pendant I′Année 1838, vol l–3, Paris

    Google Scholar 

  • Pope G, Sepehrnoori K, Sharma M, McKinney D, Speitel G, Jackson R (1999) Three-dimensional NAPL fate and transport model. U.S. Environmental Protection Agency, Cincinnati, OH. Number EPA/600/R-99-011; 344 p

    Google Scholar 

  • Pruess K (1991) TOUGH2: a general numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley Laboratory, Berkeley, CA. Number LBL-29400; 107 p

    Book  Google Scholar 

  • Pruess K, Oldenburgh C, Moridis G (1999) TOUGH2 User’s guide, Version 2.0. Lawrence Berkeley National Laboratory, Berkeley, CA. Number LBNL-43134; 198 p

    Book  Google Scholar 

  • Quintard M, Cherblanc F, Whitaker S (2001) Dispersion in heterogeneous porous media: one-equation non-equilibrium model. Transp Porous Media 44(1):181–203

    Article  CAS  Google Scholar 

  • Ramsburg C, Pennell K, Abriola L, Daniels G, Drummond C, Gamache M, Hsu H-l, Petrovskis E, Rathfelder K, Ryder J, Yavaraski T (2005) Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the bachman road site. 2. System operation and evaluation. Environ Sci Technol 39(6):1791–1801

    Article  CAS  Google Scholar 

  • Rao P, Annable M, Sillan R, Dai D, Hatfield K, Graham W, Lynn Wood A, Enfield C (1997) Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resour Res 33:2673–2686

    Article  Google Scholar 

  • Rose W, Channapragada R (1960) Microscopic aspects of capillary imbibition. In: S. of Petroleum Engineers (ed) Fall meeting of the society of petroleum engineers of AIME. Denver, CO, Number SPE Paper 1549G

    Google Scholar 

  • Rosen M, Kunjappu J (2012) Surfactants and interfacial phenomena, 4th edn. Wiley, New York, NY. Number 9780470541944; 616 p

    Book  Google Scholar 

  • Sabatini D, Knox R, Harwell J, Wu B (2000) Integrated design of surfactant enhanced DNAPL remediation: Efficient supersolubilization and gradient systems. J Contam Hydrol 45(1–2):99–121

    Article  CAS  Google Scholar 

  • Sale T (2001) Methods for determining inputs to environmental petroleum hydrocarbon mobility and recovery models. Technical Report API PUBLICATION 4711, American Petroleum Institute, 1220 L Street, Northwest, Washington, DC, 72 p

    Google Scholar 

  • Sale T, Applegate D (1997) Mobile NAPL recovery: conceptual, field, and mathematical considerations. Groundwater 35:418–426

    Article  CAS  Google Scholar 

  • Sale T, Kuhn B (1988) Recovery of wood-treating oil from an alluvial aquifer using dual drainlines. In: Petroleum hydrocarbons and organic chemicals in ground water: prevention, detection, and restoration, vol 1, Houston, TX, pp 419–442

    Google Scholar 

  • Schmidtke K, McBean E, Rovers F (1992) Evaluation of collection-well parameters for DNAPL. J Environ Eng 118(2):183–195

    Article  CAS  Google Scholar 

  • Schowalter T (1979) Mechanics of secondary hydrocarbon migration and entrapment. Am Assoc Pet Geol Bull 63(5):724–760

    Google Scholar 

  • Schwille F (1988) Dense chlorinated solvents in porous and fractured media – model experiments. Lewis Publishers, Chelsea, MI. Number 978-0873711210; 146 p

    Google Scholar 

  • Simunek J, van Genuchten M (1994) The CHAIN_2D code for simulating the two-dimensional movement of water, heat and multiple solutes in variably saturated porous media. U.S. Salinity Lab Research, Riverside, CA. Number 136; 232 p

    Google Scholar 

  • Sleep B (2003) Chapter 4: Modeling fate and transport of chlorinated organic compounds in the subsurface. In: Contaminated ground water and sediment – modeling for management and remediation. CRC Press LLC, Boca Raton, FL. Number 978-1-56670-667-4; 288 p

    Google Scholar 

  • Sleep B, Sykes J (1993) Compositional simulation of groundwater contamination by organic compounds. I. Model development and verification. Water Resour Res 29(6):1697–1708

    Article  CAS  Google Scholar 

  • Soga K, Page J, Illangasekare T (2004) A review of NAPL source zone remediation efficiency and the mass flux approach. J Hazard Mater 110(1–3):13–27

    Article  CAS  Google Scholar 

  • Stroo H, Unger M, Ward C, Kavanaugh M, Vogel C, Leeson A, Marqusee J, Smith B (2003) Peer Reviewed: Remediating Chlorinated Solvent Source Zones, A workshop lists the challenges and research needs. Environ Sci Technol 37(11):224A–230A

    Article  CAS  Google Scholar 

  • Stupp H, Paus L (1999) Migrationsverhalten organischer Grundwasser-Inhaltsstoffe und daraus resultierende Ansätze zur Beurteilung von Monitored Natural Attenuation (MNA). TerraTech 5:32–37

    Google Scholar 

  • Suchomel E, Ramsburg C, Pennell K (2007) Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants. J Contam Hydrol 94(3–4):195–214

    Article  CAS  Google Scholar 

  • Suchomel E, Kavanaugh M, Mercer J, Johnson P (2014) Chapter 2: The source zone remediation challenge. In: Kueper BH, Stroo HF, Vogel CM, Ward CH (eds) Chlorinated solvent source zone remediation. Springer, SERDP ESTCP Environmental Remediation Technology, New York, NY. Number 978-1-4614-6921-6; 713 p

    Google Scholar 

  • Suthersan S (1997) Remediation engineering: design concepts. CRC Press, Boca Raton, FL. Number 978-1-56670-137-2; 384 p

    Google Scholar 

  • Taylor T, Pennell K, Abriola L, Dane J (2001) Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses: 1. Experimental studies. J Contam Hydrol 48(3–4):325–350

    Article  CAS  Google Scholar 

  • Travis C, Doty C (1990) Can contaminated aquifers at Superfund sites be remediated? Environ Sci Technol 24:1464–1466

    Article  Google Scholar 

  • Turin J (1990) VLEACH: a one-dimensional finite difference vadose zone leaching model, Number USEPA Region 9, CH2M Hill. US Environmental Protection Agency, Redding, CA. 291 p

    Google Scholar 

  • U.S. Army Corps of Engineers (1999) Multi-phase extraction. Technical report EM 1110-1-4010. Department of the Army, Washington, DC, 286 p

    Google Scholar 

  • U.S. Army Corps of Engineers (2003) Safety and health aspects of HTRW remediation technologies. Technical report EM 1110-1-4007, Department of the Army, Washington, DC, 286 p

    Google Scholar 

  • U.S. Army Corps of Engineers (2014) Environmental quality – design: in situ thermal remediation. Technical report EM 200-1-21. Department of the Army, Washington, DC, 243 p

    Google Scholar 

  • Unger A, Sudicky E, Forsyth P (1995) Mechanisms controlling vacuum extraction coupled with air sparging for remediation of heterogeneous formations contaminated by dense nonaqueous phase liquid. Water Resour Res 31(8):1913–1925

    Article  CAS  Google Scholar 

  • USEPA (1996) How to effectively recover free product at leaking underground storage tank sites – a guide for state regulators. Technical report EPA 510-R-96-001. U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, DC, 162 p

    Google Scholar 

  • USEPA (1997a) Analysis of selected enhancements for soil vapor extraction. Technical report EPA 542-R-97-007. U.S. Environmental Protection Agency, U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, DC, 246 p

    Google Scholar 

  • USEPA (1997b) Presumptive remedy: supplemental bulletin multiphase extraction (MPE) technology for VOCs in soil and groundwater. Technical report EPA 540-F-97-004. U.S. Environmental Protection Agency, Solid Waste and Emergency Response, Washington, DC, 11 p

    Google Scholar 

  • USEPA (1999) Multi-phase extraction: state-of-the-practice. Technical report EPA 542-R-99-004. U.S. Environmental Protection Agency, National Service Center for Environmental Publications, Cincinnati, OH, 71 p

    Google Scholar 

  • USEPA (2003) The DNAPL remediation challenge: is there a case for source depletion? Technical Report EPA/600/R-03/143. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH, 129 p

    Google Scholar 

  • van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44:892–898

    Article  Google Scholar 

  • Villaume J (1985) Investigations at sites contaminated with dense, non-aqueous phase liquids (NAPLs). Ground Water Monit Rev 5(2):60–74

    Article  CAS  Google Scholar 

  • Villaume J, Lowe P, Unites D (1983) Recovery of coal gasification wastes: an innovative approach. In: N. W. W. Association (ed) Third national symposium on aquifer restoration and ground water monitoring, Worthington, OH, pp 434–445

    Google Scholar 

  • Vishnyakov A, Lee M, Neimark A (2013) Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J Phys Chem Lett 4(5):797–802

    Article  CAS  Google Scholar 

  • Voss C (1984) Saturated-unsaturated transport (SUTRA). In: Water research investigation. U.S. Geological Survey, Denver, CO, Number 84.4369

    Google Scholar 

  • Whitaker S (1999) The method of volume averaging, Theory and applications of transport in porous media, vol 13, 1st edn. Kluwer Academic Publishers, Dordrecht. 210 p

    Book  Google Scholar 

  • White M, Oostrom M (1996) STOMP subsurface transport over multiple phases: user’s guide. Pacific Northwest National Laboratory, Richland, WA. Number PNNL-11216 (UC-2010); 221 p

    Book  Google Scholar 

  • Willhite G (1986) Waterflooding. The Society of Petroleum Engineers, Richardson, TX. Number 978-1-55563-005-8; 326 p

    Google Scholar 

  • Williams D, Wilder D (1971) Gasoline pollution of a ground-water reservoir – a case history. Groundwater 9:50–54

    Article  Google Scholar 

  • Williamson D (2014) Chapter 15: Combined remedies. In: Kueper BH, Stroo HF, Vogel CM, Ward CH (eds) Chlorinated solvent source zone remediation. Springer, SERDP ESTCP Environmental Remediation Technology, New York, NY. Number 978-1-4614-6921-6; 713 p

    Google Scholar 

  • Wilson J, Conrad S, Mason W, Peplinski W, Hagan E (1990) Laboratory investigation of residual liquid organics from spills, leaks, and the disposal of hazardous wastes in groundwater. US Environmental Protection Agency, Ada, OK. Number 600/6-90/004; 287 pp

    Google Scholar 

  • Wisniewski G, Lennon G, Villaume J, Young C (1985) Response of a dense fluid under pumping stress. In: L. University (ed) Proceedings of the 17th mid-Atlantic industrial waste conference. Lehigh University, Bethlehem, PA, pp 226–237

    Google Scholar 

  • Yeh G, Salvage K, Gwo J, Zachara J, Szecsody J (1998) HYDROBIOGEOCHEM: a coupled model of hydrologic transport and mixed biogeochemical kinetic/equilibrium reactions in saturated-unsaturated. Oak Ridge National Laboratory, Oak Ridge, TN. Number ORNL/TM-13668; 311 p

    Book  Google Scholar 

  • Yuan Y, Lee T (2013) Chapter 1: Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, New York, NY. Number 978-3-642-34242-4; 663 p

    Google Scholar 

  • Zyvoloski G, Robinson B, Dash Z, Trease L (1995) User’s guide for FEHMN – application. Report. Los Alamos National Laboratory, Los Alamos, NM. Number LA-UR-94-3788, Rev. 1; 127 p

    Google Scholar 

Download references

Acknowledgments

A part of this research was carried out within the framework of the SILPHES project funded by ADEME (French Environment and Energy Management Agency). The authors acknowledge the BRGM/D3E division, for its financial support within the MULTISCALEXPER project fund. We gratefully acknowledge the financial support also provided to the PIVOTS project by the Centre-Val de Loire region (ARD 2020 program and CPER 2015-2020), and the French Ministry of Higher Education and Research (CPER 2015–2020 and public service subsidy to BRGM). This operation is co-funded by the European Union. Europe is committed to the Centre-Val de Loire region by way of the European Regional Development Fund.

The authors would like to thank David Cazaux (Inovyn), Antoine Joubert (Serpol), Nicolas Fatin-Rouge and Julien Maire (UTINAM), Benoit Paris and Quentin Giraud (INTERA), and Pierre-Yves Klein (REMEA) and Guillaume Masselot (ADEME) for allowing us to disclose the second case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéfan Colombano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colombano, S. et al. (2020). Free Product Recovery of Non-aqueous Phase Liquids in Contaminated Sites: Theory and Case Studies. In: van Hullebusch, E., Huguenot, D., Pechaud, Y., Simonnot, MO., Colombano, S. (eds) Environmental Soil Remediation and Rehabilitation. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-40348-5_2

Download citation

Publish with us

Policies and ethics