Skip to main content

Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Salinity is one of the major problems facing agricultural production worldwide, particularly in arid and semiarid environments. Unfortunately, most major economic crops (glycophytes) cannot tolerate saline conditions, even at low concentrations (<40 mM NaCl). Halophytes are tolerant of high salinities, up to 200 mM NaCl. Therefore, there is increased interest in the production of new cultivars that have the potential to produce higher yields under saline conditions. There is also research interest in understanding the various strategies, including salt tolerance and salt avoidance, that halophytes use to adapt to saline conditions, besides conventional habits like accumulation of compatible solutes and polyamine production. Additionally, halophytes use a number of complicated mechanisms to grow and reproduce under such harsh conditions, such as regulating ion concentrations in cells, exuding excessive salt from plant tissues, and eliminating salts via glands and hairs to keep salt concentrations in leaves and shoots below a certain threshold. Some halophytes produce high leaf/stem succulence or accumulate excessive salt in old leaves. Other species use ion accumulation and control plant growth to cope with salinity. In this chapter we discuss the classification and distribution of halophytes and their potential role as resources for humankind (food, oil, forage, and biofuel). Glycophyte growth is affected by high salinity, which can lead to plant death. Therefore, glycophytes use various strategies to enhance growth under salinity stress, such as producing salt-tolerant genotypes and using different mechanisms—like excretion of salt ions and salt sequestration—to improve growth and productivity. Salinity stress reduces glycophyte growth due to its negative effects on the metabolism and phytohormone levels, such as cytokinin and gibberellic acid. In addition, high salt levels have an adverse effect on water relations and disturb the nutritional balance in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GA:

Gibberellic acid

ABA:

Abscisic acid

IAA:

Indole acetic acid

CK:

Cytokinins

JA:

Jasmonates

NPQ:

Non-photochemical quenching coefficient

PV:

Perennial vine

PSh:

Perennial shrub

PSuSh:

Perennial succulent shrub

PPP:

Parasitic perennial plant

SuP:

Submerged plant

Sh:

Shrub

SSh:

Subshrubs

F:

Fern

V:

Vine

T:

Tree

RGR:

Relative growth rate

References

  • Abd Elbar OH, Abd El-Maboud MM (2013) Anatomical and physiological responses of three species of Suaeda Forssk. ex Scop. under different habitat conditions. J Appl Sci Res 9(8):5370–5379

    Google Scholar 

  • Abdelgawad AAM (2017) Tamarix nilotica (Ehrenb) bunge: a review of phytochemistry and pharmacology. J Microb Biochem Technol 9(1):544–553. https://doi.org/10.4172/1948-5948.1000340

    Article  CAS  Google Scholar 

  • Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822

    Article  CAS  Google Scholar 

  • Abobatta WF (2018) Some physiological mechanisms of salt tolerance in the glycophytes plant: overview. Acta Sci Agric 2(12):154–156

    Google Scholar 

  • Adolf VI, Jacobsen S-E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd). Environ Exp Bot 92:43–54

    Google Scholar 

  • Ahmed FA, Lotfy RA (2015) Phytochemical evaluation of some selected medicinal plants growing wildly in Southeastern Egypt. Middle East J Appl Sci 5(04):1239–1246

    Google Scholar 

  • Albert R, Pfundner G, Hertenberger G, Kastenbauer T, Watzka M (2000) The physiotype approach to understanding halophytes and xerophytes. In: Breckle S-W, Schweizer B, Arndt U (eds) Ergebnisse weltweiter ökologischer Forschung. Verlag Günter Heimbach, Stuttgart, Germany, pp 69–87

    Google Scholar 

  • Alghanem SM (2018) Ecological and botanical diversity in Haloxylon Persicum community at Al-Qassim Region in Kingdom of Saudi Arabia. Am J Environ Prot 6(2):43–49

    Article  Google Scholar 

  • Al-Said MS, Siddiqui NA, Mukhair MA, Parvez MK, Alam P, Ali M, Haque A (2017) A novel monocyclic triterpenoid and a norsesquaterpenol from the aerial parts of Suaeda monoica Forssk. ex J.F. Gmel with cell proliferative potential. Saudi Pharm J 25:1005–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Alwan ARA (2006) Past and present status of the aquatic plants of the marshlands of Iraq. Marsh Bull 2:160

    Google Scholar 

  • Amiri B, Rasouli B (2015) Effects of Salinity on Ion Exchanges in Halocnemum strobilaceum and Halostachys caspica. J Range Sci 5(1):72

    Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of response of sorghum to high salinity. J Exp Bot 41:1389–1394

    Google Scholar 

  • Asghari MH, Fallah M, Moloudizargari M, Mehdikhani F, Sepehrnia P, Bigard Moradi B (2016) A systematic and mechanistic review on the phytopharmacological properties of Alhagi species. Anc Sci Life 36(2):65–71. https://doi.org/10.4103/asl.ASL_37_16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. CRC Crit Rev Plant Sci 13:7–42

    Article  Google Scholar 

  • Aslam R, Bostan N, Amen N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plant Res 5:7108–7118

    CAS  Google Scholar 

  • Athar M, Chaudhary AH, Yousaf Z, Shabbir SM (2007) Taxonomic reflections on the parasitic angiosperms of Pakistan. Phytologia 89(3):339

    Google Scholar 

  • Atkinson MR, Findlay GP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangrove Rhizophora mucronata Lam. and Aegiceras annulata R. Br Aust J Biol Sci 20:589–599

    Article  CAS  Google Scholar 

  • Attia-Ismail SA (2015) Nutritional and feed value of halophytes and salt tolerant plants. In: El Shaer, Squires (eds) Halophytic and salt tolerant feedstuffs: impacts on nutrition, physiology and reproduction of livestock, 126, vol 106. CRC Press, New York

    Google Scholar 

  • Barbour MG (1970) Is any angiosperm an obligate halophyte? Am Midl Nat 84:105–120

    Article  Google Scholar 

  • Barhoumi Z, Wahbi D, Abderrazak S, Wided C, Chedly A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Physiol 164(7):842–850. https://doi.org/10.1016/j.jplph.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Breckle S-W (1995) How do halophytes overcome salinity? In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. University of Karachi, Department of Botany, Pakistan, pp 199–213

    Google Scholar 

  • Breckle S-W (2002) Salinity, halophytes and salt affected natural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, New York, NY, pp 53–77

    Google Scholar 

  • Burundukovaa OL, Shuyskaya EV, Rakhmankulova ZF, Burkovskayaa EV, Chubar EV, Gismatullina LG, Toderiche KN (2017) Kali komarovii (Amaranthaceae) is a xero-halophyte with facultative NADP-ME subtype of C4 photosynthesis. Flora 227:25–35. Contents lists available at Science Direct Journal homepage: www.elsevier.com/locate/flora

  • Bylka W (2004) A new acylated flavonol diglycosides from Atriplex littoralis. Acta Physiol Plant 24:393–398

    Article  Google Scholar 

  • Carvajal M, Martinez V, Alcaraz CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101

    Article  CAS  Google Scholar 

  • Castrejon-Varela A, Perez-García B, Mendoza-Ruiz A, Espinosa-Matias S (2018) Gametophyte morphology of Acrostichum aureum and A. danaeifolium (Pteridaceae). Rev Biol Trop (Int J Trop Biol ISSN-0034-7744) 66(1):178–188

    Google Scholar 

  • Chand H, Pearson MN (1998) Rapid vegetative multiplication in Colocasia esculenta (L) Schott (taro). Plant Cell Tissue Organ Cult 55:223–226

    Article  Google Scholar 

  • Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206:557–570. https://doi.org/10.1111/nph.13217

    Article  PubMed  Google Scholar 

  • Chinnock RJ (2010) Some observations on Salsola L. (Chenopodiaceae) in Australia. J Adelaide Bot Gard 24:75–79

    Google Scholar 

  • Cochrane CB, Nair PKR, Melnick SJ, Resesk AP, Ramachandran C (2008) Anticancer effects of Annona glabra plant extracts in human leukemia cell lines. Anticancer Res 28:965–972

    PubMed  Google Scholar 

  • Cooper A (1982) The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol 90:263–275

    Article  CAS  Google Scholar 

  • Cramer GR, Quarrie SA (2002) Abscsic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29:111–115

    Article  CAS  PubMed  Google Scholar 

  • Cui B, Yang Q, Zhang K, Zhao X, You Z (2010) Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol 209:279–290. https://doi.org/10.1007/s11258-010-9723-z

    Article  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 414:758–769

    Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124. https://doi.org/10.1016/S1369-5266(99)00052-7

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil. Plant Physiol 104:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JS, Tomlinson PB (1974) A new species of Ruppia in high salinity in Western Australia. J Arnold Arbor 55(1):59–66. https://www.jstor.org/stable/43781927?seq=1#page_scan_tab_contents

  • Ding W, Liu J, Wang Y, Wu D, Chang C, Wang R (2011) Salinity stress modulates habitat selection in the clonal plant Aeluropus sinensis subjected to crude oil deposition. J Torrey Bot Soc 138(3):262–271

    Article  Google Scholar 

  • Dizkirici A, Kaya Z, Cabi E, Dogan M (2010) Phylogenetic relationships of Elymus L. and related genera (Poaceae) based on the nuclear ribosomal internal transcribed spacer sequences. Turk J Bot 34:467–478

    CAS  Google Scholar 

  • Dodd J, Randall RP (2014) Eradication of kochia (Bassia scoparia (L.) A.J. Scott, Chenopodiaceae) in Western Australia. In: Thirteenth Australian weeds conference, pp 300–303. https://doi.org/10.1007/s10592-006-9151-8

  • Dudley LM (1994) Salinity in the soil environment. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 13–30

    Google Scholar 

  • Duvall MR, Fisher AE, Columus JT, Ingram AL, Wysocki WP, Burke SV, Clark SLG, Kelchner SA (2016) Phylogenomics and plastome evolution of the chloridoid grasses (Chloridiodeae: Poaceae). Int J Plant Sci 177(3):235–246

    Article  Google Scholar 

  • El-Ameir YA (2013) Spatial distribution and nutritive value of two Typha species in Egypt. Egypt J Bot 53(1):91–113

    Google Scholar 

  • El-Khouly AA (2001) Plant diversity in the dry land habitats of Siwa Oasis, in the Western desert of Egypt. J Environ Sci Mansoura Univ 22:125–143

    Google Scholar 

  • El-Khouly AA, Khedr AA (2000) Species diversity and phenology in the wetland vegetation of Sewa Oasis, in the Western desert of Egypt. Desert Inst Bull Egypt 50:239–258

    Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome, Italy. http://www.fao.org/ag/AGL/agll/spush

  • Feizbakhsh A, Naeemy A (2011) Volatile constituents of essential oils of Eleocharis pauciflora (Light) link and Eleocharis uniglums (Link) J. A. Schultes growing wild in Iran. Bull Chem Soc Ethiop 25(3):461–464

    Google Scholar 

  • Flowers TJ (2014) eHALOPH Halophytes Database. [WWW document]. http://www.sussex.ac.uk/affiliates/halophytes/. Accessed 9 Nov 2014

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331. https://doi.org/10.1093/aob/mcu267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Austr J Plant Physiol 13:75–91

    CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Franks SJ, Richards CL, Gonzales E, Cousins JE, Hamrick JL (2004) Multi-scale genetic analysis of Uniola paniculata (Poaceae): a coastal species with a linear, fragmented distribution. Am J Bot 91(9):1345–1351

    Google Scholar 

  • Gándara E, Sosa V (2013) Testing the monophyly and position of the North American shrubby desert genus Leucophyllum (Scrophulariaceae: Leucophylleae). Bot J Linn Soc 171:508–518

    Google Scholar 

  • Gevana DT, Im S (2016) Allometric models for Rhizophora Stylosa griff. In dense monoculture plantation in the Philippines. Malays For 79(1 & 2):39–53

    Google Scholar 

  • Ghazanfar S A, Osborne J (2015) Typification of Zygophyllum propinquum Decne. and Z. coccineum L. (Zygophyllaceae) and a key to Tetraena in SW Asia. Kew Bull 70:38. https://doi.org/10.1007/s12225-015-9588-3

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gorham J (1995) Mechanisms of salt tolerance of halophytes. In: Choukr-Allah R, Malcom CV, Hamdy A (ed) Halophytes and biosaline agriculture. Ciheam, Instituto Agronomico Mediterraneo, Bary, Italy, Marcel Dekker INC., pp 31–54

    Google Scholar 

  • Grattana SR, Grieveb CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Grigore M-N, Toma C (2010) Structuri secretoare de sa˘ruri la halofite. O abordare integrativa˘. Edit. Acad. Rom., Bucures¸ti

    Google Scholar 

  • Grigore M-N, Toma C, Zamfirache M-M, Boscaiu M, Olteanu Z, Cojocaru D (2012) Ecological anatomy in halophytes with C4 photosynthesis: discussing adaptative features in endangered ecosystems. Carp J Earth Environ Sci 7(2):13–21

    Google Scholar 

  • Grozeva N, Todorova M, Pavlov D (2019) Karyological and morphological variation within Petrosimonia brachiata Bunge in Bulgaria. Botanica Serbica 43(1):13–21. https://doi.org/10.2298/BOTSERB1901013G

    Article  Google Scholar 

  • Gul B, Khan MA (1998) Population characteristics of a coastal halophyte Arthrocnemum macrostachyum. Pak J Bot 30:189

    Google Scholar 

  • Hajibagheri MA, Flowers TJ (1989) X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum. Planta 177(1):131–134

    Google Scholar 

  • Hameed A, Khan MA (2011) Halophytes: biology and economic potentials. Karachi Univ J Sci 39(1 & 2):40–44

    Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plant grown at various salinity levels. J Exp Bot 62(1):185–193

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid cycling Brassica species. Plant Soil 179:25–33

    Article  CAS  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63. https://doi.org/10.1016/j.envexpbot.2015.11.010

    Article  CAS  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+-pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Organ Cult 108:63–71. https://doi.org/10.1007/s11240-011-0013-9

    Article  CAS  Google Scholar 

  • Jeschke WD, Peuke AD, Pate JS, Hartung W (1997) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48:1737–1747

    Article  CAS  Google Scholar 

  • Kaczmark-Derda W, Ostrem L, Myromslien M, Brandsaeter LO, Netland J (2018) Growth pattern of Juncus effusus and Juncus conglomeratus in response to cutting frequency. Weed Research published by Wiley on behalf of European Weed Research Society. Int J Weed Biol Ecol Veg Manag. https://doi.org/10.1111/wre.12338

  • Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am J Bot 97(10):1664–1687

    Google Scholar 

  • Karmoker JL, Van Steveninck FM (1979) The effect of abscisic acid on the uptake and distribution of ions in intact seedlings of Phaseolus vulgaris cv. Redland Pioneer. Physiol Plant 45:453–459

    Article  CAS  Google Scholar 

  • Kavut YT, Avcioglu R, Demiroglu G, Geren H, Kir B (2014) Adaptability of newly improved Creeping Bentgrass (Agrostis stolonifera L.) genotypes in a Mediterranean environment. Turk J Field Crop 19(1):19–24

    Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28(1):81–87

    Google Scholar 

  • Khedr AA (1999) Floristic composition and phytogeography in a Mediterranean deltaic lake (Lake Burollos), Egypt. Ecologia Mediterr 25:1–11

    Google Scholar 

  • Khedr AA, Zahran MA (2002) The salt marsh visitation of lake Bardawil, North Sinai, an overview. In: Proceedings of international symposium on “The optimum resources utilization in salt-affected ecosystems in arid and semi-arid regions”, pp 339–345, 8–10 April, 2002, Cairo, Egypt

    Google Scholar 

  • King SE, Grace JB (2000) The effects of gap size and disturbance type on invasion of wet pine Savanna by cogongrass, Imperata cylindrica (Poaceae). Am J Bot 87(9):1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury RW, Epstein E (1984) Selection for salt resistance in spring wheat. Crop Sci 24:310–315

    Article  Google Scholar 

  • Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci 4:267. https://doi.org/10.3389/fpls.2013.00267, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728732/

  • Kotuby-Amacher J, Koenig K, Kitchen B (2000) Salinity and plant tolerance. https://extension.usu.edu/files/publications/publication/AG-SO-03.pdf

  • Koyro H-W, Stelzer R (1988) Ion concentrations in the cytoplasm and vacuoles of rhizodermis cells from NaCl treated Sorghum, Spartina and Puccinellia plants. J Plant Physiol 133:441–446

    Article  CAS  Google Scholar 

  • Kumar B, Singh B (1996) Effect of plant hormones on growth and yield of wheat irrigated with saline water. Ann Agric Res 17:209–212

    Google Scholar 

  • Lachno DR, Baker DA (1986) Stress induction of abscisic acid in maize roots. Physiol Plant 68:215–221

    Article  CAS  Google Scholar 

  • Lazof D, Cheeseman JM (1988) Sodium and potassium compartmentation and transport across the roots of intact Spergularia marina. Plant Physiol 88:1274–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Houerou HN (1993) Salt tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Leith H, El-Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer Academic Publications, Dordrecht, The Netherlands, p 403

    Google Scholar 

  • Lehmann J, Atzorn R, Bruckner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    Article  CAS  Google Scholar 

  • Li L, XiMing Z (2007) Germination strategies of two halophytes in Salt Desert of northwestern China. Sci China Ser D 50(Suppl 1):115–121. https://doi.org/10.1007/s11430-007-5004-7

    Article  Google Scholar 

  • Li Z, Jia G, Ni X (2019) The complete chloroplast genome sequence of Achnatherum splendens (Pooideae), a high-quality forage grass in Northern China. Mitochondrial DNA Part B 4(1):1841–1843. https://doi.org/10.1080/23802359.2019.1612720

  • Liao P-C, Havanond S, Huang S (2007) Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conserv Genet 8:89–98

    Article  CAS  Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY, pp 29–56

    Google Scholar 

  • Mahmoud AH (2017) Production of Quinoa (Chenopodium quinoa) in the marginal environments of South Mediterranean Region: Nile Delta, Egypt. Egypt J Soil Sci 57(3):329–337

    Google Scholar 

  • Mahmoud AH, Soliman MS, Metwally NS, Farrag AH, Elsharabasy FS, Arafa S, Ibrahim AMM (2016) Tremendous effect of Salsola tetrandra and Salsola baryosma on a liver toxicity using paracetamol overdose. Der Pharma Chemica 8 (18):117–126. www.derpharmachemica.com

  • Mills DM, Robinson K, Hodges TK (1985) Sodium and potassium fluxes and compartmentation in roots of Atriplex and oat. Plant Physiol 78:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo W, Natori T, Jiang S, Nishimura N, Omasa K (1997) Responses of photosynthesis and water use to drought in two desert annual Agriophyllum squarrosum and Bassia dasyphylla. J Arid Land Stud 7(2):185–195

    Google Scholar 

  • Mohammed NE (1980) Studies in the genus Juncus in Egypt. MSc thesis, Fac. Sci., Cairo University, Egypt

    Google Scholar 

  • Montero E, Cabot C, Barcelo J, Poschenrieder C (1997) Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol Plant 101:17–22

    Article  CAS  Google Scholar 

  • Montero E, Cabot C, Poschenrieder CH, Barcelo J (1998) Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54–62

    Article  CAS  Google Scholar 

  • Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanism. Wiley-Liss, New York

    Google Scholar 

  • Morsy A (2008) Ecophysiological studies on Atriplex farinosa Forssk under different habitat conditions. Aust J Basic Appl Sci 2:272–281

    Google Scholar 

  • Mozaffarian V (2001) Flora of Iran (Vol 38; Chenopodiaceae). Institute of Forests & Rangelands Publications, Iran, p 38

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. Plant Physiol 167:645–663

    CAS  Google Scholar 

  • Munns R, King RW (1988) Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Physiol 88:703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nam BE, Hong MG, Park HJ, Kim JG (2018) Soil factors determining the distribution of Phragmites australis and Phacelurus latifolius in upper tidal zone. J Ecol Environ 42(25):2–6. https://doi.org/10.1186/s41610-018-0086-z

    Article  Google Scholar 

  • Nayyar H, Walia DP, Kaistha BL (1995) Performance of bread wheat (Triticum aestivum L.) seed primed with growth regulators and inorganic salts. Indian J Agric Sci 65:116–122

    Google Scholar 

  • Nichita C, Georgeta Neagu G, Cucum A, Vulturescu V, Bertesteanu SVG (2016) Antioxidative properties of Plantago lanceolata L. extracts evaluated by chemiluminece method. AgroLife Sci J 5(2):95–102

    Google Scholar 

  • Nilsen E, Orcutt DM (1996) The physiology of plants under stress—abiotic factors. Wiley, New York, pp 118–130

    Google Scholar 

  • Ohri D (2015) The taxonomic riddle of Chenopodium album L. complex (Amaranthaceae). Nucleus 58(2):131–134. https://doi.org/10.1007/s13237-015-0143-2

  • Okoli CO, Akah PA, Onuoha NJ, Okoye TC, Nwoye AC, Nworu CS (2008) Acanthus montanus: an experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. J Appl Bot Food Qual 85:159–167

    Google Scholar 

  • Osathanunkul M, Suwannapoom S, Singtonat S, Poomipoo N, Jampeetong A, Madesis P (2014) Rapid analysis for the identification of the seagrass Halophila ovalis (Hydrocharitaceae). Afr J Biotechnol 14(8):649–656. https://doi.org/10.5897/AJB204.13855

    Article  CAS  Google Scholar 

  • Patel MK, Mishra A, Jha B (2016) Untargeted metabolomics of halophytes. In: Kim S (ed) Marine Omics: principles and applications. CRC Press, Boca Raton, FL, pp 309–325. https://doi.org/10.1201/9781315372303-18

  • Pearlstein SL, Felger RS, Glenn EP, Harrington J, Al-Ghanem KA, Nelson SG (2012) Nipa (Distichlis palmeri): a perennial grain crop for saltwater irrigation. J Arid Environ 82:60–70

    Article  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Podlipaev SA (1995) Plant Trypanosome (Mastigophora: Trypanosomatidae) from Cynanchum acutum Plants in Northern Israel. Phytoparasitica 23(4):351–353

    Google Scholar 

  • Prakash L, Prathapasenan G (1990) NaCl and gibberellic acid induced changes in the content of auxin, the activity of cellulose and pectinlyase during leaf growth in rice (Oryza sativa). Ann Bot 365:251–257

    Article  Google Scholar 

  • Ragasa CY, Ebajo Jr VD, Reyes MM, Mandia EH, Brkljaca R, Urban S (2015) Triterpenes and Sterols from Sonneratia alba. Int J Curr Pharm Rev Res 6(6):256–261. www.ijcpr.com

  • Ramadan T (1998) Ecophysiology of salt excretion in the xerohalophyte reaumuria. New Phytol 139:273–281

    Article  CAS  Google Scholar 

  • Rao DLN, Gill HS (1995) Biomass and biofertilzer production by Sesbania cannabina in alkaline soil. Biores Technol 53:169–172

    Article  CAS  Google Scholar 

  • Ravikumar S, Gnanadesigan M (2011) Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa. Asian Pac J Trop Biomed 1(5):348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo-Gomez S, Mateos-Naranjo E, Davy AJ, Fernandez-Munoz F, Castellanos EM, Luque T, Enrique Figueroa M (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    Google Scholar 

  • Ribaut JM, Pilet PE (1991) Effect of water stress on growth, osmotic potential and abscisic acid content of maize roots. Physiol Plant 81:156–162

    Article  CAS  Google Scholar 

  • Rozema J (1995) Biology of halophytes. In: Choukr-AllAh R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker Inc., New York, NY, pp 17–30

    Google Scholar 

  • Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 82:83–95. https://doi.org/10.1016/j.envexpbot.2012.08.004

    Article  CAS  Google Scholar 

  • Rozema J, Bijwaard P, Prast G, Broekman R (1985) Ecophysiological adaptations of coastal halophytes from fore dunes and salt marshes. Vegetatio 62:499–521

    Article  Google Scholar 

  • Rozema J, Broekman R, Ji B, Bruning B, Katschnig D (2014) Saving fresh water by crop cultivation on salinizing soils, a survey. Report number KfC 146/2014. http://edepot.wur.nl/352728

  • Saslis-Lagoudakis CH, Moray C, Bromham L (2014) Evolution of salt tolerance in angiosperms: a phylogenetic approach. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Nova Science Publishers, Hauppauge, NY, USA, pp 77–95

    Google Scholar 

  • Schat H (1982) On the ecology of some Dutch dune slack plants. PhD thesis, Vrije Universiteit, Amsterdam, p 128

    Google Scholar 

  • Schillinger WF (2007) Ecology and control of Russian thistle (Salsola iberica) after spring wheat harvest. Weed Sci 55:381–385

    Article  CAS  Google Scholar 

  • Scudiero E, Skaggs T, Corwin D (2017) The U.S. Salinity Laboratory (USDA-ARS) guidelines for assessing multi-scale soil salinity with proximal and remote sensing. Geophysical Research Abstracts 19, EGU2017-10576, 2017 EGU General Assembly 2017

    Google Scholar 

  • Serag MS, Khedr AA, Zahran MA, Willis AJ (1999) Ecology of some aquatic plants in polluted water courses, Nile Delta, Egypt. J Union Arab Biol 9:85–89

    Google Scholar 

  • Serag MS, Zahran MA, Khedr AA (2002) Ecology and economic potentialities of the dominant salt-tolerant reeds and rushes in the Nile Delta. In: Proceedings of international symposium on “The optimum resources utilization in salt-affected ecosystems in arid and semi-arid regions”, pp 245–256, 8–10 April, 2002, Cairo, Egypt

    Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691. https://doi.org/10.1016/j.tplants.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Scientia Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK (2016) Halophytes as bioenergy crops. Front Plant Sci 7:1372. https://doi.org/10.3389/fpls.2016.01372

    Article  PubMed  PubMed Central  Google Scholar 

  • Shennan C, Hunt R, Macrobbie EAC (1987) Salt tolerance in Aster tripolium L. I. The effect of salinity on growth. Plant Cell Environ 10(1):59–65

    Google Scholar 

  • Sheue C-R, Liu H-Y, Yong JWH (2003) Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 52:287–294

    Article  Google Scholar 

  • Shukla V, Pala Z, Alok A, Desai N (2015) Screening of different Artemisia spp. from Western Ghats of Maharashtra for an Anti-Malarial Compound—Artemisinin. Am J Plant Sci 6:1619–1632. Published Online June 2015 in SciRes. http://www.scirp.org/journal/ajps, http://dx.doi.org/10.4236/ajps.2015.69162

  • Siddiqui ZS, Khan MA (2013) Some physiological attributes of dimorphic seeds of Halopyrum Mucronatum (L.) Stapf. Pak J Bot 45(6):1975–1979

    Google Scholar 

  • Sinha K, Deka AC, Bharalee RB (2016) Morphogenesis of edible gall in Zizania latifolia (Griseb.) Turcz. ex Stapf due to Ustilago esculenta Henn. infection in India Swapan Afr J Microbiol Res 10(31):1215–1223. https://doi.org/10.5897/ajmr2016.8207

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer R, Lauchli A (2010) Salt- and flooding tolerance of Puccinellia peisonis IV. Root respiration and the role of aerenchyma in providing atmospheric oxygen to the roots. Zeitschriftfü Pflanzenphysiologie 97(2):171–178. https://doi.org/10.1016/s0044-328x (80)80031-6

  • Storey R, Jones GW (1979) Responses of Atriplex spongiosa and Suaeda monoica to Salinity. Plant Physiol 63:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stukonis V, Juzenas S, Ceseviciene J, Norkeviciene E (2015) Assessment of morpho-anatomical traits of red fescue (Festuca rubra L.) germplasm differing in origin. Zemdirb-Agric 102(4):437–442. https://doi.org/10.13080/z-a.2015.102.056

  • Sukhorukov AP (2008) Fruit anatomy of the genus Anabasis (Salsoloideae, Chenopodiaceae). Aust Syst Bot 21:431–442

    Article  Google Scholar 

  • Tackholm V (1974) Students’ flora of Egypt. Cairo University Press, Egypt

    Google Scholar 

  • Tajeddin B, Behmadi H (2019) Respiration rate and some physicochemical characteristics of Salicornia bigelovii as a leafy green vegetable. J Food Biosci Technol 9(2):21–28

    Google Scholar 

  • Tanaka N, Kuo J, Omori Y, Nakaoka M, Aioi K (2003) Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. J Plant Res 116:273–279

    Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Poll Res 24:16531–16535

    Article  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    Article  CAS  PubMed  Google Scholar 

  • Tehranizadeh ZA, Ali Baratian A, Hosseinzadeh H (2016) Russian olive (Elaeagnus angustifolia) as a herbal healer. BioImpacts 6(3):155–167

    Article  CAS  Google Scholar 

  • Thevs N, Zerbe S, Kyosev Y, Rozi A, Tang B, Abdusalih N, Novitskiy Z (2012) Apocynum venetum L. and Apocynum pictum Schrenk (Apocynaceae) as multi-functional and multi-service plant species in Central Asia: a review on biology, ecology, and utilization. J Appl Bot Food Qual 85:159–167

    Google Scholar 

  • Tomlinson PB, Posluszny U (1977) Features of dichotomizing apices in Flagellaria Indics (Monocotyledones). Am J Bot 64(9):1057–1065

    Article  Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

    Article  Google Scholar 

  • United Nations Population Information Network available online at https://www.un.org/en/development/desa/population/

  • Vaicekonyte R, Kiviat E, Nsenga F, Ostfeld A (2014) An exploration of common reed (Phragmites australis) bioenergy potential in North America. Mires and Peat 13 (2013/14), Article 12:1–9. http://www.mires-and-peat.net

  • van de Wouw M, Hanson J, Luethi S (1999) Morphological and agronomic characterisation of a collection of napier grass (Pennisetum purpureum) and P. purpureum × P. glaucum. Trop Grassl 33:150–158

    Google Scholar 

  • van Diggelen J (1988) A comparative study on the ecophysiology of salt marsh halophytes. PhD thesis, Vrije Universiteit, p 208

    Google Scholar 

  • Vaurasi V, Kant R (2016) Effects of salinity and plant growth media on in vitro growth and development of taro (Colocasia esculenta) varieties. Acta Horticulturae et Regiotecturae 1:17–20. https://doi.org/10.1515/ahr-2016-0005

    Article  Google Scholar 

  • Wang Y, Mopper S, Hasentein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57(5):1161–1170

    Google Scholar 

  • Yasseen BT, Abu-Al-Basal MA (2008) Ecophysiology of Limonium axillare and Avicennia marina from the coastline of Arabian Gulf-Qatar. J Coast Conserv 12:35–42. https://doi.org/10.1007/s11852-008-0021-z

    Article  Google Scholar 

  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Zahran MA (1993) Juncus and Kochi fiber-and fodder-producing halophytes under salinity and aridity stress. In: Pessarakli M (ed) Plant and crop stress. New York-Basal-Hong Kong, pp 505–528

    Google Scholar 

  • Zhang H, Du C, Wang Y, Wang J, Zheng L, Wang Y (2016) The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Plant Physiol Biochem 106:278–287. https://doi.org/10.1016/j.plaphy.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  • Zhao KF, Fan H, Jiang XY, Zhou S (2002) Critical day-length and photoinductive cycles for the induction of flowering in halophyte Suaeda salsa. Plant Sci 162:27–31

    Article  CAS  Google Scholar 

  • Zhao K, Song J, Zhao M, Feng G, Liu J (2011) Species, types, distribution, and economic potential of halophytes in China. Plant Soil 342:495–509. https://doi.org/10.1007/s11104-010-0470-7

    Article  CAS  Google Scholar 

  • Zia S, Khan MA (2004) Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot 82(2):151–157. https://doi.org/10.1139/B03-118

  • Zurayk RA, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehabil 10(3):213–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Fouad Abobatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abobatta, W.F. (2020). Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_7

Download citation

Publish with us

Policies and ethics