Skip to main content

Polymer Genome: A Polymer Informatics Platform to Accelerate Polymer Discovery

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

The Materials Genome Initiative has brought about a paradigm shift in the design and discovery of novel materials. In a growing number of applications, the materials innovation cycle has been greatly accelerated as a result of insights provided by data-driven materials informatics platforms. High-throughput computational methodologies, data descriptors, and machine learning are playing an increasingly invaluable role in research development portfolios across both academia and industry. Polymers, especially, have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. The nascent field of polymer informatics seeks to provide tools and pathways for accelerated polymer property prediction (and materials design) via surrogate machine learning models built on reliable past data. With this goal in mind, we have carefully accumulated a dataset of organic polymers whose properties were obtained either computationally (bandgap, dielectric constant, refractive index, and atomization energy) or experimentally (glass transition temperature, solubility parameter, and density). A fingerprinting scheme that captures atomistic to morphological structural features was developed to numerically represent the polymers. Machine learning models were then trained by mapping the polymer fingerprints (or features) to their respective properties. Once developed, these models can rapidly predict properties of new polymers (within the same chemical class as the parent dataset) and can also provide uncertainties underlying the predictions. Since different properties depend on different length-scale features, the prediction models were built on an optimized set of features for each individual property. Furthermore, these models are incorporated in a user friendly online platform named Polymer Genome (www.polymergenome.org). Systematic and progressive expansion of both chemical and property spaces are planned to extend the applicability of Polymer Genome to a wide range of technological domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.I. Jordan, T.M. Mitchell, Science 349(6245), 255 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    Article  ADS  Google Scholar 

  3. L. Ruddigkeit, R. van Deursen, L.C. Blum, J.L. Reymond, J. Chem. Inf. Model. 52(11), 2864 (2012). https://doi.org/10.1021/ci300415d. PMID: 23088335

    Article  Google Scholar 

  4. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  5. Materials Genome Initiative. https://www.mgi.gov/

  6. The Novel Materials Discovery (nomad) Laboratory. https://nomad-coe.eu/

  7. National Center for Competence in Research - Marvel. nccr-marvel.ch

  8. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016)

    Article  Google Scholar 

  9. K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang, I.h. Chu, T. Smidt, B. Bocklund, M. Horton, et al., Comput. Mater. Sci. 139, 140 (2017)

    Google Scholar 

  10. A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, R. Ramprasad, Mater. Today 21, 785–796 (2017). https://doi.org/10.1016/j.mattod.2017.11.021

    Article  Google Scholar 

  11. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, npj Comput. Mater. 3, 54 (2017). https://doi.org/10.1038/s41524-017-0056-5

  12. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, Comput. Mater. Sci. 125, 123 (2016). https://doi.org/10.1016/j.commatsci.2016.08.039

    Article  Google Scholar 

  13. T. Mueller, A.G. Kusne, R. Ramprasad, Machine Learning in Materials Science: Recent Progress and Emerging Applications, vol. 29 (Wiley, Hoboken, 2016), pp. 186–273

    Google Scholar 

  14. G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22(12), 3762 (2010)

    Article  Google Scholar 

  15. A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, A. Mar, Chem. Mater. 28(20), 7324 (2016)

    Article  Google Scholar 

  16. P. Pankajakshan, S. Sanyal, O.E. de Noord, I. Bhattacharya, A. Bhattacharyya, U. Waghmare, Chem. Mater. 29(10), 4190 (2017). https://doi.org/10.1021/acs.chemmater.6b04229

    Article  Google Scholar 

  17. C. Kim, G. Pilania, R. Ramprasad, Chem. Mater. 28(5), 1304 (2016). https://doi.org/10.1021/acs.chemmater.5b04109

    Article  Google Scholar 

  18. A. Jain, Y. Shin, K.A. Persson, Nat. Rev. Mater. 1, 15004 (2016). https://doi.org/10.1038/natrevmats.2015.4

    Article  ADS  Google Scholar 

  19. A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, R. Ramprasad, Sci. Rep. 6, 20952 (2016). https://doi.org/10.1038/srep20952

    Article  ADS  Google Scholar 

  20. L. Ghadbeigi, J.K. Harada, B.R. Lettiere, T.D. Sparks, Energy Environ. Sci. 8, 1640 (2015). https://doi.org/10.1039/C5EE00685F

    Article  Google Scholar 

  21. J. Hattrick-Simpers, C. Wen, J. Lauterbach, Catal. Lett. 145(1), 290 (2015). https://doi.org/10.1007/s10562-014-1442-y

    Article  Google Scholar 

  22. J. Hill, A. Mannodi-Kanakkithodi, R. Ramprasad, B. Meredig, Materials Data Infrastructure and Materials Informatics (Springer International Publishing, Cham, 2018), pp. 193–225. https://doi.org/10.1007/978-3-319-68280-8_9

    Google Scholar 

  23. A. Mannodi-Kanakkithodi, T.D. Huan, R. Ramprasad, Chem. Mater. 29(21), 9001 (2017). https://doi.org/10.1021/acs.chemmater.7b02027

    Article  Google Scholar 

  24. C. Kim, T.D. Huan, S. Krishnan, R. Ramprasad, Sci. Data 4, 170057 (2017). https://doi.org/10.1038/sdata.2017.57

    Article  Google Scholar 

  25. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  ADS  Google Scholar 

  26. V. Botu, R. Batra, J. Chapman, R. Ramprasad, J. Phys. Chem. C 121(1), 511 (2017). https://doi.org/10.1021/acs.jpcc.6b10908

    Article  Google Scholar 

  27. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, npj Comput. Mater. 3(1), 37 (2017). https://doi.org/10.1038/s41524-017-0042-y

  28. V. Botu, J. Chapman, R. Ramprasad, Comput. Mater. Sci. 129, 332 (2017). https://doi.org/10.1016/j.commatsci.2016.12.007

    Article  Google Scholar 

  29. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8(1), 872 (2017)

    Article  ADS  Google Scholar 

  30. L. Chen, T.D. Huan, R. Ramprasad, Sci. Rep. 7(1), 6128 (2017)

    Article  ADS  Google Scholar 

  31. A. Mannodi-Kanakkithodi, G.M. Treich, T.D. Huan, R. Ma, M. Tefferi, Y. Cao, G.A. Sotzing, R. Ramprasad, Adv. Mater. 28(30), 6277 (2016). https://doi.org/10.1002/adma.201600377

    Article  Google Scholar 

  32. G.M. Treich, M. Tefferi, S. Nasreen, A. Mannodi-Kanakkithodi, Z. Li, R. Ramprasad, G.A. Sotzing, Y. Cao, IEEE Trans. Dielectr. Electr. Insul. 24(2), 732 (2017). https://doi.org/10.1109/TDEI.2017.006329

    Article  Google Scholar 

  33. A.F. Baldwin, T.D. Huan, R. Ma, A. Mannodi-Kanakkithodi, M. Tefferi, N. Katz, Y. Cao, R. Ramprasad, G.A. Sotzing, Macromolecules 48, 2422 (2015)

    Article  ADS  Google Scholar 

  34. Q. Zhu, V. Sharma, A.R. Oganov, R. Ramprasad, J. Chem. Phys. 141(15), 154102 (2014). https://doi.org/10.1063/1.4897337

    Article  ADS  Google Scholar 

  35. R. Lorenzini, W. Kline, C. Wang, R. Ramprasad, G. Sotzing, Polymer 54(14), 3529 (2013). https://doi.org/10.1016/j.polymer.2013.05.003

    Article  Google Scholar 

  36. A.F. Baldwin, R. Ma, T.D. Huan, Y. Cao, R. Ramprasad, G.A. Sotzing, Macromol. Rapid Commun. 35, 2082 (2014)

    Article  Google Scholar 

  37. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, J.E. Gubernatis, Comput. Mater. Sci. 125, 92 (2016). https://doi.org/10.1016/j.commatsci.2016.08.018

    Article  Google Scholar 

  38. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Prog. Mater. Sci. 83, 236 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001

    Article  Google Scholar 

  39. C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, J. Phys. Chem. C 122(31), 17575 (2018). https://doi.org/10.1021/acs.jpcc.8b02913

    Article  Google Scholar 

  40. T.D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, R. Ramprasad, Sci. Data 3, 160012 (2016). https://doi.org/10.1038/sdata.2016.12

    Article  Google Scholar 

  41. V. Sharma, C.C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R. Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, R. Ramprasad, Nat. Commun. 5, 4845 (2014)

    Article  ADS  Google Scholar 

  42. J. Bicerano, Prediction of Polymer Properties (Dekker, New York, 2002)

    Book  Google Scholar 

  43. A.F.M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters (CRC Press, Florida, 1983)

    Google Scholar 

  44. C.C. Wang, G. Pilania, S.A. Boggs, S. Kumar, C. Breneman, R. Ramprasad, Polymer 55, 979 (2014)

    Article  Google Scholar 

  45. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  46. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73(2), 515 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  ADS  Google Scholar 

  47. T.D. Huan, M. Amsler, V.N. Tuoc, A. Willand, S. Goedecker, Phys. Rev. B 86, 224110 (2012)

    Article  ADS  Google Scholar 

  48. H. Sharma, V. Sharma, T.D. Huan, Phys. Chem. Chem. Phys. 17, 18146 (2015)

    Article  Google Scholar 

  49. T.D. Huan, V. Sharma, G.A. Rossetti, R. Ramprasad, Phys. Rev. B 90, 064111 (2014)

    Article  ADS  Google Scholar 

  50. T.D. Huan, M. Amsler, R. Sabatini, V.N. Tuoc, N.B. Le, L.M. Woods, N. Marzari, S. Goedecker, Phys. Rev. B 88, 024108 (2013)

    Article  ADS  Google Scholar 

  51. A.F. Baldwin, R. Ma, A. Mannodi-Kanakkithodi, T.D. Huan, C. Wang, J.E. Marszalek, M. Cakmak, Y. Cao, R. Ramprasad, G.A. Sotzing, Adv. Matter. 27, 346 (2015)

    Article  Google Scholar 

  52. R. Ma, V. Sharma, A.F. Baldwin, M. Tefferi, I. Offenbach, M. Cakmak, R. Weiss, Y. Cao, R. Ramprasad, G.A. Sotzing, J. Mater. Chem. A 3, 14845 (2015). https://doi.org/10.1039/C5TA01252J

    Article  Google Scholar 

  53. Khazana, a Computational Materials Knowledgebase. https://khazana.gatech.edu

  54. T.D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad, Phys. Rev. B 92(014106), 14106 (2015). https://doi.org/10.1103/PhysRevB.92.014106

    Article  ADS  Google Scholar 

  55. C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul, EXCLI J. 8, 74 (2009)

    Google Scholar 

  56. C. Nantasenamat, C. Isarankura-Na-Ayudhya, V. Prachayasittikul, Expert Opin. Drug Discov. 5(7), 633 (2010). https://doi.org/10.1517/17460441.2010.492827. PMID: 22823204

    Article  Google Scholar 

  57. Rdkit, Open Source Toolkit for Cheminformatics. http://www.rdkit.org/

  58. P. Labute, J. Mol. Graph. Model. 18(4), 464 (2000). https://doi.org/10.1016/S1093-3263(00)00068-1

    Article  Google Scholar 

  59. P. Ertl, B. Rohde, P. Selzer, J. Med. Chem. 43(20), 3714 (2000). https://doi.org/10.1021/jm000942e. PMID: 11020286

    Article  Google Scholar 

  60. S. Prasanna, R. Doerksen, Curr. Med. Chem. 16, 21 (2009)

    Article  Google Scholar 

  61. M. Sicher, S. Mohr, S. Goedecker, J. Chem. Phys. 134(4), 044106 (2011)

    Article  ADS  Google Scholar 

  62. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Mach. Learn. 46(1), 389 (2002). https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  63. K. Vu, J.C. Snyder, L. Li, M. Rupp, B.F. Chen, T. Khelif, K.R. Müller, K. Burke, Int. J. Quantum Chem. 115(16), 1115 (2015). https://doi.org/10.1002/qua.24939

    Article  Google Scholar 

  64. Polymer Genome. http://www.polymergenome.org

  65. B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 361(6400), 360 (2018)

    Article  ADS  Google Scholar 

  66. D.A. Cohn, Z. Ghahramani, M.I. Jordan, J. Artif. Intell. Res 4, 129 (1996)

    Article  Google Scholar 

  67. H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song (2018, preprint). arXiv:1802.08786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rampi Ramprasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekaran, A., Kim, C., Ramprasad, R. (2020). Polymer Genome: A Polymer Informatics Platform to Accelerate Polymer Discovery. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_18

Download citation

Publish with us

Policies and ethics