Skip to main content

The Right Tool for the Job: An Overview of Hsp90 Inhibitors

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

Molecular chaperones are responsible for maintaining intracellular protein quality control by facilitating the conformational maturation of new proteins as well as the refolding of denatured proteins. While there are several classes of molecular chaperones in the cell, this chapter will focus solely on the small molecule modulation of Hsp90, the 90 kDa heat shock protein. Hsp90 is not only responsible for folding nascent proteins, but it also regulates the triage of numerous client proteins through partnering with the ubiquitin-proteasome pathway. Consequently, Hsp90 plays critical role in maintaining the protein homeostasis (proteostasis) network within the cell and is required for the activation/maturation of more than 300 client protein substrates. Many of the clients that depend upon Hsp90 are overexpressed or mutated during malignant transformation. This often renders the clients thermodynamically unstable and dependent on Hsp90 for stability. This phenomenon results in an oncogenic ‘addiction’ to the Hsp90 protein folding machinery as Hsp90 maintains onco-client proteins. Furthermore, Hsp90-dependent substrates are associated with all ten hallmarks of cancer, making Hsp90 an attractive target for the development of cancer chemotherapeutics. In fact, 17 small molecule inhibitors of Hsp90 have been developed and clinically evaluated for the treatment of cancer. Unfortunately, most of these molecules have failed for various reasons, necessitating a new approach to modulate the Hsp90 protein folding machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatsuma T, Ogawa H, Akasaka K, Asai A et al (2002) Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg Med Chem 10:3445–3454

    PubMed  CAS  Google Scholar 

  • Ardi VC, Alexander LD, Johnson VA, Mcalpine SR (2011) Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins. ACS Chem Biol 6(12):1357–1366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Avila C, Hadden MK, Ma Z, Kornilayev BA, Ye QZ, Blagg BS (2006) High-throughput screening for Hsp90 ATPase inhibitors. Bioorg Med Chem Lett 16:3005–3008

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV et al (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A 93:8379–8383

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bohen SP (1998) Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol Cell Biol 18(6):3330–3339. https://doi.org/10.1128/MCB.18.6.3330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bras GL, Radanyi C, Peyrat J-F et al (2007) New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J Med Chem 50:6189–6200

    PubMed  Google Scholar 

  • Burlison JA, Neckers L, Smith AB, Maxwell A, Blagg BSJ (2006) Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibitor of Hsp90. J Am Chem Soc 128:15529–15536

    PubMed  CAS  Google Scholar 

  • Chiosis G, Lucas B, shtil A, Huezo H, Rosen N (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10(11):3555–3564

    PubMed  CAS  Google Scholar 

  • Davenport J, Balch M, Galam L, Girgis A, Hall J, Blagg BS, Matts RL (2014) High-throughput screen of natural product libraries for hsp90 inhibitors. Biology 3:101–138

    PubMed  PubMed Central  CAS  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    CAS  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658

    PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly AC, Mays JR, Burlinson JA et al (2008) The design, synthesis and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity. J Org Chem 73:8901–8920

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eskew JD, Sadikot T, Morales P et al (2011) Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel hERG. Circ Res 92(12):e87–e100

    PubMed  Google Scholar 

  • Galam L, Hadden MK, Ma Z, Ye QZ, Yun BG, Blagg BS, Matts RL (2007) High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorg Med Chem 15:1939–1946

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Shinogle HE, Garg G, Vielhauer GA et al (2014) Hsp90 C-terminal inhibitors exhibit antimigratory activity by disrupting the Hsp90α/Aha1 complex in PC3-MM2 cells. ACS Chem Biol 10(2):577–590

    PubMed  PubMed Central  Google Scholar 

  • Hall JA, Kusuma BR, Brandt GEL, Blagg BSJ (2014) Cruentaren a binds F1F0 ATP synthase to modulate the Hsp90 protein folding machinery. ACS Chem Biol 9:976–985

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancer. Biochim Biophys Acta 1823(3):742–755

    PubMed  CAS  Google Scholar 

  • Jundt L, Steinmetz H, Luger P et al (2006) Isolation and structure elucidation of cruentarens A and B – novel members of the benzolactone class of ATPase inhibitors from the myxobacterium Byssovorax cruenta. Eur J Org Chem 2006(22):5036–5044

    Google Scholar 

  • Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410

    PubMed  CAS  Google Scholar 

  • Khandelwal A, Hall JA, Blagg BS (2013) Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. J Org Chem 78(16):7859–7884

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khandelwal A, Kent CN, Balch M et al (2018) Structure-guided design of an Hsp90ß N-terminal isoform-selective inhibitor. Nat Commun 9(1):425

    PubMed  PubMed Central  Google Scholar 

  • Kunze B, Sasse F, Wieczorek H, Huss M (2007) Cruentaren a, a highly cytotoxic benzolactone from myxobacteria is a novel selective inhibitor of mitochondrial F1-ATPases. FEBS Lett 581(18):3523–3527

    PubMed  CAS  Google Scholar 

  • Kusuma BR, Khandelwal A, Gu W et al (2014) Synthesis and biological evaluation of coumarin replacements of novobiocin as Hsp90 inhibitors. Bioorg Med Chem 22(4):1441–1449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Chung IK (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett 290(1):76–86

    PubMed  CAS  Google Scholar 

  • Lu P, Mamiya T, Lu LL et al (2009) Silibinin attenuates amyloid beta(25–35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 331(1):319–326

    PubMed  CAS  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92(3):242–248

    PubMed  CAS  Google Scholar 

  • Martin CJ, Gaisser S, Challis IR, Wilkinson B, Gregory M, Prodromou C, Roe SM, Pearl LH, Boyd SM, Zhang MQ (2008) Molecular characterization of macbecin as an Hsp90 inhibitor. J Med Chem 51(9):2853–2857. https://doi.org/10.1021/jm701558c. Epub 2008 Mar 22

    Article  PubMed  CAS  Google Scholar 

  • Matts RL, Brandt GE, Lu Y et al (2011) A systematic protocol for the characterization of Hsp90 modulators. Bioorg Med Chem 19:684–692

    PubMed  CAS  Google Scholar 

  • Mcconnell JR, Alexander LA, Mcalpine SR (2014) A heat shock protein 90 inhibitor that modulates the immunophilins and regulates hormone receptors without inducing the heat shock response. Bioorg Med Chem Lett 24(2):661–666

    PubMed  CAS  Google Scholar 

  • Moulick K, Ahn JH, Zong H, Rodina A et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826

    PubMed  PubMed Central  CAS  Google Scholar 

  • Palermo CM, Westlake CA, Gasiewicz TA (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44:5041–5052

    PubMed  CAS  Google Scholar 

  • Papathanassiu A, Macdonald N, Emlet D, Vu H (2011) Antitumor activity of efrapeptins, alone or in combination with 2-deoxyglucose, in breast cancer in vitro and in vivo. Cell Stress Chaperones 16(2):181–193

    PubMed  CAS  Google Scholar 

  • Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BSJ, Chadli A (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288(10):7313–7325

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peng X, Guo X, Borkan SC et al (2005) Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J Biol Chem 280(13):13148–13152

    PubMed  CAS  Google Scholar 

  • Prodromou C (2012) The ‘Active Life’ of Hsp90 complexes. Biochim Biophys Acta 1823(3):614–623

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90(1):65–75

    PubMed  CAS  Google Scholar 

  • Radanyi C, Bras GL, Messaoudi S et al (2008) Synthesis and biological activity of simplified denoviose-coumarins related to novobiocin as potent inhibitors of heat-shock protein 90 (hsp90). Bioorg Med Chem Lett 18(7):2495–2498

    PubMed  CAS  Google Scholar 

  • Radanyi C, Bras GL, Marsaud V et al (2009) Antiproliferative and apoptotic activities of tosylcyclonovobiocic acids as potent heat shock protein 90 inhibitors in human cancer cells. Cancer Lett 274(1):88–94

    PubMed  CAS  Google Scholar 

  • Rodina A, Wang T, Yan P et al (2016) The epichaperome is an integrated chaperome network that facilitates tumor survival. Nature 538(7625):397–410

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sharp S, Workman P (2006) Inhibitors of HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348

    PubMed  CAS  Google Scholar 

  • Soga S, Sharma SV, Shiotsu Y et al (2001) Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol 48:435–445

    PubMed  CAS  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, Mcalpine SR (2010) Mechanistic studies of sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1(1):4–8

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whitesell L, Shifrin SD, Schwab G, Neckers LM (1992) Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 52:1721–1728

    PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345

    PubMed  CAS  Google Scholar 

  • Yu XM, Shen G, Neckers L et al (2005) Hsp90 inhibitor identified from a library of novobiocin analogues. J Am Chem Soc 127:12778–12779

    PubMed  CAS  Google Scholar 

  • Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D (2009) Characterization of celastrol to inhibit Hsp90 and Cdc37 interaction. J Biol Chem 284(51):35381–35389

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Brandt GE, Galam L, Matts RL, Blagg BSJ (2011) Identification and initial SAR of silybin: an Hsp90 inhibitor. Bioorg Med Chem Lett 21(9):2659–2664

    PubMed  CAS  Google Scholar 

  • Zhao H, Yan B, Peterson LB, Blagg BSJ (2012) 3-arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med Chem Lett 3(4):327–331

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Institutes of Health (CA120458 and CA213566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. J. Blagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koren, J., Blagg, B.S.J. (2020). The Right Tool for the Job: An Overview of Hsp90 Inhibitors. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_9

Download citation

Publish with us

Policies and ethics