Skip to main content

Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

Protein homeostasis (Proteostasis) is essential for correct and efficient protein function within the living cell. Among the critical components of the Proteostasis Network (PN) are molecular chaperones that serve widely in protein biogenesis under physiological conditions, and prevent protein misfolding and aggregation enhanced by conditions of cellular stress. For Alzheimer’s, Parkinson’s, Huntington’s diseases and ALS, multiple classes of molecular chaperones interact with the highly aggregation-prone proteins amyloid-β, tau, α-synuclein, huntingtin and SOD1 to influence the course of proteotoxicity associated with these neurodegenerative diseases. Accordingly, overexpression of molecular chaperones and induction of the heat shock response have been shown to be protective in a wide range of animal models of these diseases. In contrast, for cancer cells the upregulation of chaperones has the undesirable effect of promoting cellular survival and tumor growth by stabilizing mutant oncoproteins. In both situations, physiological levels of molecular chaperones eventually become functionally compromised by the persistence of misfolded substrates, leading to a decline in global protein homeostasis and the dysregulation of diverse cellular pathways. The phenomenon of chaperone competition may underlie the broad pathology observed in aging and neurodegenerative diseases, and restoration of physiological protein homeostasis may be a suitable therapeutic avenue for neurodegeneration as well as for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abisambra JF et al (2010) Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal Plasticity Deficits in Tau Transgenic Mice. J Neurosci 30:15374 LP–15315382

    Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    PubMed  CAS  Google Scholar 

  • Aprile FA et al (2017) Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry 56:1177–1180. https://doi.org/10.1021/acs.biochem.6b01178

    Article  PubMed  CAS  Google Scholar 

  • Arosio P et al (2016) Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 7:10948

    PubMed  PubMed Central  CAS  Google Scholar 

  • Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8:1185–1186

    PubMed  CAS  Google Scholar 

  • Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    PubMed  CAS  Google Scholar 

  • Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 280:2873–2878

    PubMed  CAS  Google Scholar 

  • Baglioni S et al (2006) Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci 26:8160–8167

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blair LJ et al (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123:4158–4169

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brehme M et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1–16

    Google Scholar 

  • Bucciantini M et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    PubMed  CAS  Google Scholar 

  • Bückig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid β-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360

    PubMed  Google Scholar 

  • Capponi S et al (2016) Molecular chaperones in the pathogenesis of amyotrophic lateral sclerosis: the role of HSPB1. Hum Mutat 37:1202–1208

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338–10347

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan HYE, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811–2820

    PubMed  CAS  Google Scholar 

  • Cohen SIA et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cook C, Petrucelli L (2019) Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 101:1057–1069

    PubMed  CAS  Google Scholar 

  • Cummings CJ et al (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    PubMed  CAS  Google Scholar 

  • Cummings CJ et al (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    PubMed  CAS  Google Scholar 

  • Daturpalli S, Waudby CA, Meehan S, Jackson SE (2013) Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 425:4614–4628

    PubMed  CAS  Google Scholar 

  • Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733–14740

    PubMed  CAS  Google Scholar 

  • DeMattos RB et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 99:10843–10848

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dickey CA et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    PubMed  PubMed Central  CAS  Google Scholar 

  • Evans CG, Wisén S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1-42) aggregation in vitro. J Biol Chem 281:33182–33191

    PubMed  CAS  Google Scholar 

  • Fath T, Eidenmüller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22:9733 LP–9739741

    Google Scholar 

  • Fernandez-Funez P et al (2016) Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 113(35):E5212–E5221. https://doi.org/10.1073/pnas.1608045113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351:1081–1100

    PubMed  CAS  Google Scholar 

  • Fonte V et al (2008) Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283:784–791

    PubMed  CAS  Google Scholar 

  • Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15:2969–2979

    PubMed  PubMed Central  CAS  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gao X et al (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 59:781–793

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gestaut D, Limatola A, Joachimiak L, Frydman J (2019) The ATP-powered gymnastics of TRiC/CCT: an asymmetric protein folding machine with a symmetric origin story. Curr Opin Struct Biol 55:50–58

    PubMed  PubMed Central  CAS  Google Scholar 

  • Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Q et al (2018) In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172:696–705

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hageman J et al (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37:355–369

    PubMed  CAS  Google Scholar 

  • Hay DG et al (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13:1389–1405

    PubMed  CAS  Google Scholar 

  • Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76

    PubMed  CAS  Google Scholar 

  • Hermansson E et al (2014) The chaperone domain BRICHOS prevents CNS toxicity of amyloid-β peptide in Drosophila melanogaster. Dis Model Mech 7:659–665

    PubMed  PubMed Central  Google Scholar 

  • Hiller S (2019) Chaperone-bound clients: the importance of being dynamic. Trends Biochem Sci 44:517–527

    PubMed  CAS  Google Scholar 

  • Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI (2004) Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 23:4307–4318

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hosp F et al (2017) Spatiotemporal proteomic profiling of Huntington’s disease inclusions reveals widespread loss of protein function. Cell Rep 21:2291–2303

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez-Sanchez M et al (2015) siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat Chem Biol 11:347

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jinwal UK et al (2009) Chemical manipulation of Hsp70 ATPase activity regulates tau stability. J Neurosci 29:12079–12088

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kakkar V et al (2016) The S/T-Rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. Mol Cell 62:272–283

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karagöz GE et al (2014) Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–974

    PubMed  PubMed Central  Google Scholar 

  • Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840

    PubMed  CAS  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    PubMed  CAS  Google Scholar 

  • Kirchhausen T, Owen D, Harrison SC (2014) Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6:a016725

    PubMed  PubMed Central  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    PubMed  CAS  Google Scholar 

  • Koldewey P, Horowitz S, Bardwell JCA (2017) Chaperone-client interactions: non-specificity engenders multifunctionality. J Biol Chem 292:12010–12017

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krakowiak J et al (2018) Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. Elife 7:e31668

    PubMed  PubMed Central  Google Scholar 

  • Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A 97:1589–1594

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kundel F et al (2018) Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem Biol 13:636–646

    PubMed  PubMed Central  CAS  Google Scholar 

  • Labbadia J et al (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135:1180–1196

    PubMed  PubMed Central  Google Scholar 

  • Leverenz JB et al (2007) Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 17:139–145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liao L et al (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068

    PubMed  CAS  Google Scholar 

  • Lieberman AP, Shakkottai VG, Albin RL (2019) Polyglutamine repeats in neurodegenerative diseases. Annu Rev Pathol Mech Dis 14:1–27

    CAS  Google Scholar 

  • Lindberg MJ, Byström R, Boknäs N, Andersen PM, Oliveberg M (2005) Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc Natl Acad Sci U S A 102:9754 LP–9759759

    Google Scholar 

  • Link CD, Cypser JR, Johnson CJ, Johnson TE (1999) Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones 4:235–242

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lo Bianco C et al (2008) Hsp104 antagonizes a-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest 118:3087–3097

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lotz GP et al (2010) Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J Biol Chem 285:38183–38193

    PubMed  PubMed Central  CAS  Google Scholar 

  • Luk KC, Mills IP, Trojanowski JQ, Lee VMY (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625

    PubMed  CAS  Google Scholar 

  • Luo W et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104:9511–9516

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mangiarini L et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    PubMed  CAS  Google Scholar 

  • Månsson C et al (2014a) Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J Biol Chem 289:31066–31076

    PubMed  PubMed Central  Google Scholar 

  • Månsson C et al (2014b) DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 19:227–239

    PubMed  Google Scholar 

  • Marsh JL et al (2000) Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 9:13–25

    PubMed  CAS  Google Scholar 

  • Martín-Peña A, Rincón-Limas DE, Fernandez-Fúnez P (2018) Engineered Hsp70 chaperones prevent Aβ42-induced memory impairments in a Drosophila model of Alzheimer’s disease. Sci Rep 8:1–14

    Google Scholar 

  • Massol RH, Boll W, Griffin AM, Kirchhausen T (2006) A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad Sci U S A 103:10265–10270

    PubMed  PubMed Central  CAS  Google Scholar 

  • McLean PJ et al (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J Neurochem 83:846–854

    PubMed  CAS  Google Scholar 

  • Mitul S, Jeff K, Gloria L (2008) Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone. J Neurosci Res 86:2763–2773

    Google Scholar 

  • Miyasaka T et al (2005) Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis 20:372–383

    PubMed  CAS  Google Scholar 

  • Mok SA et al (2018) Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat Struct Mol Biol 25:384–393

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moloney TC et al (2014) Heat shock protein 70 reduces α-synuclein-induced predegenerative neuronal dystrophy in the α-synuclein viral gene transfer rat model of Parkinson’s disease. CNS Neurosci Ther 20:50–58

    PubMed  CAS  Google Scholar 

  • Morán Luengo T, Mayer MP, Rüdiger SGD (2019) The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol 29:164–177

    PubMed  Google Scholar 

  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99:10417–10422

    PubMed  PubMed Central  Google Scholar 

  • Nagy M, Fenton WA, Li D, Furtak K, Horwich AL (2016) Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc Natl Acad Sci U S A 113:5424–5428

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nillegoda NB et al (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524:247–251. https://doi.org/10.1038/nature14884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nollen EAA et al (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101:6403–6408

    PubMed  PubMed Central  CAS  Google Scholar 

  • Novoselov SS et al (2013) Molecular chaperone mediated late-stage neuroprotection in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. PLoS One 8:e73944

    PubMed  PubMed Central  CAS  Google Scholar 

  • Olzscha H et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78

    PubMed  CAS  Google Scholar 

  • Ostapchenko VG et al (2013) The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-β oligomer toxicity. J Neurosci 33:16552–16564

    PubMed  PubMed Central  CAS  Google Scholar 

  • Outeiro TF et al (2006) Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 351:631–638

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park S-H et al (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145

    PubMed  CAS  Google Scholar 

  • Pemberton S et al (2011) Hsc70 protein interaction with soluble and fibrillar alpha-synuclein. J Biol Chem 286:34690–34699

    PubMed  PubMed Central  CAS  Google Scholar 

  • Petrucelli L et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    PubMed  CAS  Google Scholar 

  • Poska H et al (2016) Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ 42 toxicity in Drosophila. Biochem J 473:3683–3704

    PubMed  CAS  Google Scholar 

  • Prudencio M, Hart PJ, Borchelt DR, Andersen PM (2009) Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 18:3217–3226

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rekas A, Jankova L, Thorn DC, Cappai R, Carver JA (2007) Monitoring the prevention of amyloid fibril formation by α-crystallin. FEBS J 274:6290–6304

    PubMed  CAS  Google Scholar 

  • Roodveldt C et al (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J 28:3758–3770

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scherzinger E et al (1997) Huntingtin encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558

    PubMed  CAS  Google Scholar 

  • Shahmoradian SH et al (2013) TRiC’s tricks inhibit huntingtin aggregation. Elife 2:e00710

    PubMed  PubMed Central  Google Scholar 

  • Shammas SL et al (2011) Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101:1681–1689

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shelton LB et al (2017) Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc Natl Acad Sci U S A 114:201707039

    Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shimshek DR, Mueller M, Wiessner C, Schweizer T, van der Putten PH (2010) The HSP70 molecular chaperone is not beneficial in a mouse model of α-synucleinopathy. PLoS One 5:1–7

    Google Scholar 

  • Song Y et al (2013) Molecular chaperone Hsp110 rescues a vesicle transport defect produced by an ALS-associated mutant SOD1 protein in squid axoplasm. Proc Natl Acad Sci U S A 110:5428 LP–5425433

    Google Scholar 

  • St Martin JL et al (2007) Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J Neurochem 100:1449–1457

    PubMed  CAS  Google Scholar 

  • Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9:1097

    PubMed  PubMed Central  Google Scholar 

  • Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 72:429–451

    PubMed  CAS  Google Scholar 

  • Tue NT, Shimaji K, Tanaka N, Yamaguchi M (2012) Effect of αB-crystallin on protein aggregation in Drosophila. J Biomed Biotechnol 2012:1–7

    Google Scholar 

  • Uryu K et al (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous α-synuclein inclusions of α-synucleinopathies. Am J Pathol 168:947–961

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Ham TJ et al (2008) C. elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. PLoS Genet 4:e1000027

    PubMed  PubMed Central  Google Scholar 

  • Waelter S et al (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12:1393–1407

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J et al (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12:2753–2764

    PubMed  CAS  Google Scholar 

  • Wang J et al (2005a) Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: αB-crystallin modulates aggregation. Hum Mol Genet 14:2335–2347

    PubMed  CAS  Google Scholar 

  • Wang Q et al (2005b) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19:869–871

    PubMed  CAS  Google Scholar 

  • Wang J, Martin E, Gonzales V, Borchelt DR, Lee MK (2008) Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging 29:586–597

    PubMed  Google Scholar 

  • Wang J et al (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5:e1000350

    PubMed  PubMed Central  Google Scholar 

  • Warrick JM et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    PubMed  CAS  Google Scholar 

  • Watanabe M et al (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8:933–941

    PubMed  CAS  Google Scholar 

  • Watanabe S et al (2014) SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system. Mol Brain 7:62

    PubMed  PubMed Central  Google Scholar 

  • Waudby CA et al (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98:843–851

    PubMed  PubMed Central  CAS  Google Scholar 

  • Willingham S, Outeiro TF, Devit MJ, Lindquist SL, Muchowski PJ (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302:1769–1773

    PubMed  CAS  Google Scholar 

  • Wojtas AM et al (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 114:E6962–E6971

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H et al (2015) Aggregation of polyglutamine-expanded ataxin 7 protein specifically sequesters ubiquitin-specific protease 22 and deteriorates its deubiquitinating function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. J Biol Chem 290:21996–22004

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yerbury JJ et al (2013) The small heat shock proteins αb-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 18:251–257

    PubMed  CAS  Google Scholar 

  • Yu A et al (2014) Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc Natl Acad Sci U S A 111:E1481–E1490

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu A et al (2019) Tau protein aggregates inhibit the protein-folding and vesicular trafficking arms of the cellular proteostasis network. J Biol Chem 294:7917–7930. https://doi.org/10.1074/jbc.RA119.007527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zetterström P, Graffmo KS, Andersen PM, Brännström T, Marklund SL (2011) Proteins that bind to misfolded mutant superoxide dismutase-1 in spinal cords from transgenic amyotrophic lateral sclerosis (ALS) model mice. J Biol Chem 286:20130–20136

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Binari R, Zhou R, Perrimon N (2010) A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184:1165 LP–1161179

    Google Scholar 

  • Zheng X et al (2016) Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife 5:1–26

    Google Scholar 

Download references

Acknowledgements

We thank Christopher M. Dobson for critical reading of part of the manuscript. This work was supported by National Institutes of Health (National Institute on Aging), the Daniel F. and Ada L. Rice Foundation to RIM and research grants from Eli Lilly & Co Ltd, Lilly Research Centre and the Tau Consortium of the Rainwater Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Morimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinnige, T., Yu, A., Morimoto, R.I. (2020). Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_4

Download citation

Publish with us

Policies and ethics