Skip to main content

Target Delivery of Iron Oxide Magnetic Nanoparticles for Imaging and Treatment

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Abstract

At this time, passive targeting with the aid of enhanced permeability and retention (EPR effect), active targeting with the aid of molecular or other targeting agents, and employing external magnetic field are used to successfully deliver IONPs to aim tumor site. Latest progresses in treatment of disease are toward targeted delivery. With fast progresses in this field, researchers employed the IONPs as a hopeful theranostic vehicle. In this chapter, we focused on passive and active target delivery of IONPs for diagnosis, imaging, and therapy purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Controlled Release 149(3):314–322

    Article  CAS  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  Google Scholar 

  • Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updates 17(4):89–95

    Article  Google Scholar 

  • Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6):5266–5273

    Article  CAS  Google Scholar 

  • Basu S, Alavi A (2009) Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care. Nucl Med Rev Cent East Eur 12(1):1–13

    Google Scholar 

  • Bhattacharya D, Das M, Mishra D, Banerjee I, Sahu SK, Maiti TK, Pramanik P (2011) Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultra dispersed nanoconjugates for bimodal imaging. Nanoscale 3(4):1653–1662

    Article  CAS  Google Scholar 

  • Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6(50):43989–44012

    Article  CAS  Google Scholar 

  • Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-Kolon A, Skepper JN, Müller KH (2016) In vitro targeting and selective killing of T47D breast cancer cells by purpurin and 5-Fluorouracil anchored to magnetic CNTs: nitrene-based functionalization versus uptake, cytotoxicity, and intracellular fate. ACS Biomater Sci Eng 2(8):1273–1285

    Article  CAS  Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M, Miyazono K, Uesaka M (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823

    Article  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  Google Scholar 

  • Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP, Munn LL (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Can Res 62(23):6831–6836

    CAS  Google Scholar 

  • Chen H, Gu Y, Hu Y, Qian Z (2007) Characterization of pH-and temperature-sensitive hydrogel nanoparticles for controlled drug release. PDA J Pharm Sci Technol 61(4):303–313

    CAS  Google Scholar 

  • Chen H, Wang L, Yu Q, Qian W, Tiwari D, Yi H, Wang AY, Huang J, Yang L, Mao H (2013) Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer. Int J Nanomed 8:3781

    Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  CAS  Google Scholar 

  • Clauson RM, Chen M, Scheetz LM, Berg B, Chertok B (2018) Size-controlled iron oxide nanoplatforms with lipidoid-stabilized shells for efficient magnetic resonance imaging-trackable lymph node targeting and high-capacity biomolecule display. ACS Appl Mater Interfaces 10(24):20281–20295

    Article  CAS  Google Scholar 

  • Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011a) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193

    Article  CAS  Google Scholar 

  • Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011b) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 32(26):6291–6301

    Article  CAS  Google Scholar 

  • Dahms N, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264(21):12115–12118

    CAS  Google Scholar 

  • Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML (2006) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158

    Article  CAS  Google Scholar 

  • D’souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Controlled Release 203:126–139

    Google Scholar 

  • Fan C, Gao W, Chen Z, Fan H, Li M, Deng F, Chen Z (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404(1):180–190

    Article  CAS  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  • Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents) 7(5):552–558

    Google Scholar 

  • Göppert TM, Müller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187

    Article  CAS  Google Scholar 

  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci 105(7):2586–2591

    Article  CAS  Google Scholar 

  • Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091

    Article  CAS  Google Scholar 

  • Gusev S, Povaliĭ T, Volobueva T, Zakharchenko V (1988) The distribution of negative charges on the luminal surface of Descemet’s endothelium. Tsitologiia 30(8):1022–1026

    CAS  Google Scholar 

  • Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Can Res 70(15):6303–6312

    Article  CAS  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  CAS  Google Scholar 

  • Hayashi K, Sato Y, Sakamoto W, Yogo T (2016) Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relativity and heat-generation power. ACS Biomater Sci Eng 3(1):95–105

    Article  CAS  Google Scholar 

  • Hillery AM, Lloyd AW, Swarbrick J (2002) Drug delivery and targeting: for pharmacists and pharmaceutical scientists. CRC Press

    Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95(8):4607–4612

    Article  CAS  Google Scholar 

  • Hu Y, Li J, Yang J, Wei P, Luo Y, Ding L, Sun W, Zhang G, Shi X, Shen M (2015) Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomater Sci 3(5):721–732

    Article  CAS  Google Scholar 

  • Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches. Adv Funct Mater

    Google Scholar 

  • Islam T, Josephson L (2009) Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 5(2):99–107

    Article  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17):812–818

    Article  CAS  Google Scholar 

  • Jae-Hyun L, Yong-Min H, Young-wook J, Seo J-W, Jang J-T, Ho-Taek S, Sungjun K, Eun-Jin C, Yoon H-G, Suh J-S (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95

    Article  CAS  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40

    Article  CAS  Google Scholar 

  • Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50(2):191–197

    Article  CAS  Google Scholar 

  • Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496(2):191–218

    Article  CAS  Google Scholar 

  • Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    Article  CAS  Google Scholar 

  • Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864

    Article  CAS  Google Scholar 

  • Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792

    Article  CAS  Google Scholar 

  • Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, Miyauchi Y (1984) Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 54(11):2367–2374

    Article  CAS  Google Scholar 

  • Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32(33):8562–8573

    Article  CAS  Google Scholar 

  • Le Droumaguet B, Nicolas J, Brambilla D, Mura S, Maksimenko A, De Kimpe L, Salvati E, Zona C, Airoldi C, Canovi M (2012) Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer’s disease. ACS Nano 6(7):5866–5879

    Article  CAS  Google Scholar 

  • Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089

    Article  CAS  Google Scholar 

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689

    Article  CAS  Google Scholar 

  • Li Z, Yin S, Cheng L, Yang K, Li Y, Liu Z (2014) Magnetic targeting enhanced theranostic strategy based on multimodal imaging for selective ablation of cancer. Adv Func Mater 24(16):2312–2321

    Article  CAS  Google Scholar 

  • Li Z, Xu F, Li Q, Liu S, Wang H, Möhwald H, Cui X (2015) Synthesis of multifunctional bovine serum albumin microcapsules by the sonochemical method for targeted drug delivery and controlled drug release. Colloids Surf, B 136:470–478

    Article  CAS  Google Scholar 

  • Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, Shen H, Zhang Z, Dai J (2015) A collagen-binding EGFR single-chain Fv antibody fragment for the targeted cancer therapy. J Controlled Release 209:101–109

    Article  CAS  Google Scholar 

  • Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705

    Google Scholar 

  • Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X (2011) Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv Func Mater 21(8):1498–1504

    Article  CAS  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

    Article  CAS  Google Scholar 

  • Lu Y, Low PS (2012) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 64:342–352

    Article  Google Scholar 

  • Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Can Res 56(20):4694–4701

    Google Scholar 

  • Lundin J, Kimby E, Björkholm M, Broliden P-A, Celsing F, Hjalmar V, Möllgård L, Rebello P, Hale G, Waldmann H (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100(3):768–773

    Article  CAS  Google Scholar 

  • Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X (2015) RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T 1-weighted MR imaging of gliomas. Nanoscale 7(34):14538–14546

    Article  CAS  Google Scholar 

  • Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802

    Article  CAS  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  Google Scholar 

  • Manish G, Vimukta S (2011) Targeted drug delivery system: a review. Res J Chem Sci 1(2):135–138

    Google Scholar 

  • Manjili HK, Ma’mani L, Tavaddod S, Mashhadikhan M, Shafiee A, Naderi-Manesh H (2016) D, L-Sulforaphane loaded Fe 3 O 4@ gold core shell nanoparticles: a potential sulforaphane delivery system. PloS one 11(3):e0151344

    Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  CAS  Google Scholar 

  • Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550

    Article  CAS  Google Scholar 

  • Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, Wei W, Liu H, Engle JW, Hu P (2018) Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy. J Am Chem Soc 140(44):14971–14979

    Article  CAS  Google Scholar 

  • Nosrati H, Mojtahedi A, Danafar H, Kheiri Manjili H (2018) Enzymatic stimuli‐responsive methotrexate‐conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res Part A 106(6):1646–1654

    Google Scholar 

  • Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar M-A, Davaran S, Danafar H, Kheiri Manjili H (2019) Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood–brain barrier shuttle for mri-monitored brain delivery of paclitaxel. ACS Biomater Sci Eng

    Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  • Peng X-H, Qian X, Mao H, Wang AY, Chen Z, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321

    CAS  Google Scholar 

  • Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN (2004) Targeted therapy in breast cancer the HER-2/neu gene and protein. Mol Cell Proteomics 3(4):379–398

    Article  CAS  Google Scholar 

  • Sakulkhu U, Mahmoudi M, Maurizi L, Coullerez G, Hofmann-Amtenbrink M, Vries M, Motazacker M, Rezaee F, Hofmann H (2015) Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 3(2):265–278

    Article  CAS  Google Scholar 

  • Schottelius M, Laufer B, Kessler H, Wester H-Jr (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42(7):969–980

    Google Scholar 

  • Seymour L, Ulbrich K, Wedge S, Hume I, Strohalm J, Duncan R (1991) N-(2-hydroxypropyl) methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br J Cancer 63(6):859

    Article  CAS  Google Scholar 

  • Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20(6):1668–1676

    Article  CAS  Google Scholar 

  • Shojaei S, Ghasemi Z, Shahrisa A (2017) Cu (I)@ Fe3O4 nanoparticles supported on imidazolium‐based ionic liquid‐grafted cellulose: green and efficient nanocatalyst for multicomponent synthesis of N‐sulfonylamidines and N‐sulfonylacrylamidines. Appl Organomet Chem

    Google Scholar 

  • Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36

    Article  CAS  Google Scholar 

  • Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16(5):1181–1188

    Article  CAS  Google Scholar 

  • Subbiah V, Brown RE, McGuire MF, Buryanek J, Janku F, Younes A, Hong D (2014) A novel immunomodulatory and molecularly targeted strategy for refractory Hodgkin’s lymphoma. Oncotarget 5(1):95

    Article  Google Scholar 

  • Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res, Part A 78(3):550–557

    Article  CAS  Google Scholar 

  • Suresh T, Lee LX, Joshi J, Barta SK (2014) New antibody approaches to lymphoma therapy. J Hematol Oncol 7(1):58

    Article  CAS  Google Scholar 

  • Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Controlled Release 146(3):264–275

    Article  CAS  Google Scholar 

  • Von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10(7):545–552

    Article  CAS  Google Scholar 

  • Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R (2008) Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315

    Article  CAS  Google Scholar 

  • Wang Y, Su P, Wang S, Wu J, Huang J, Yang Y (2013) Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates. J Mater Chem B 1(38):5028–5035

    Article  CAS  Google Scholar 

  • Wang L, An Y, Yuan C, Zhang H, Liang C, Ding F, Gao Q, Zhang D (2015) GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells. Int J Nanomed 10:2507

    Article  CAS  Google Scholar 

  • Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med 158(2):141–146

    Article  CAS  Google Scholar 

  • Widder KJ, Senyei AE, Ranney DF (1979) Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol 16:213–271

    Article  CAS  Google Scholar 

  • Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD (2010) A responsive europium (III) chelate that provides a direct readout of pH by MRI. J Am Chem Soc 132(40):14002–14003

    Article  CAS  Google Scholar 

  • Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  CAS  Google Scholar 

  • Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4(4):439–449

    Article  CAS  Google Scholar 

  • Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G (2009a) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243

    Article  CAS  Google Scholar 

  • Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Sajja HK, Wang L, Duan H, Ni C (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525

    Google Scholar 

  • Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ (2011) cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160

    Article  CAS  Google Scholar 

  • YoungáKim W, SeungáKim J (2015) Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem Commun 51(45):9343–9345

    Article  CAS  Google Scholar 

  • Zhang F, Huang X, Zhu L, Guo N, Niu G, Swierczewska M, Lee S, Xu H, Wang AY, Mohamedali KA (2012) Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials 33(21):5414–5422

    Article  CAS  Google Scholar 

  • Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5(3):309–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Danafar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nosrati, H., Salehiabar, M., Sefidi, N., Javani, S., Davaran, S., Danafar, H. (2020). Target Delivery of Iron Oxide Magnetic Nanoparticles for Imaging and Treatment. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_8

Download citation

Publish with us

Policies and ethics