Skip to main content

Methods of Bacteriophages Production with Application of Alternate Magnetic Field

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering (PAIC 2019)

Abstract

The chapter presents the methods of bacteriophage production with the application of the alternate magnetic field. Bacteriophages are viruses that can infect and destroy bacteria cells. Up to date, numerous types of phages have been discovered. Nevertheless, the basic mechanisms and properties are common. Nowadays, the growing interest of the application of bacteriophages in a different field (e.g. medical, pharmaceutical, food preservation, biosensors, nanomaterials) causes the improved methods of phage’s production are necessary to design. The magnetically assisted bacteriophages production method was then proposed. The preliminary results suggest, that electromagnetic stimulation may lead to process improvement by the increased number of produced virions and their lytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S.T.: Bacteriophage clinical use as antibacterial “drugs”: utility and precedent. Microbiol. Spectr. 5(4) (2017)

    Google Scholar 

  • Abedon, S.T.: Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv. Drug Deliv. Rev. 145, 18–39 (2018)

    Article  CAS  Google Scholar 

  • Abedon, S.T., Kuhl, S.J., Blasdel, B.G., Kutter, E.M.: Phage treatment of human infections. Bacteriophage 1(2), 66–85 (2011)

    Article  Google Scholar 

  • Ackermann, H.W.: 5500 Phages examined in the electron microscope. Arch. Virol. 152(2), 227–243 (2007)

    Article  CAS  Google Scholar 

  • Adriaenssens, E.M., Wittmann, J., Kuhn, J.H., Turner, D., Sullivan, M.B., Dutilh, B.E., Jang, H.B., van Zyl, L.J., Klumpp, J., Lobocka, M., Switt, A.I.M., Rumnieks, J., Edwards, R.A., Uchiyama, J., Alfenas-Zerbini, P., Petty, N.K., Kropinski, A.M., Barylski, J., Gillis, A., Clokie, M.R.C., Prangishvili, D., Lavigne, R., Aziz, R.K., Duffy, S., Krupovic, M., Poranen, M.M., Knezevic, P., Enault, F., Tong, Y., Oksanen, H.M., Brister, J.R.: Taxonomy of prokaryotic viruses: 2017 update from the ICTV bacterial and archaeal viruses subcommittee. Arch. Virol. 163(4), 1125–1129 (2018)

    Article  CAS  Google Scholar 

  • Baldwin, D., Summer, N.S.: Prevention and remediation of petroleum reservoir souring and corrosion by treatment with virulent bacteriophage. Patent number: US8168419 B2 (2012)

    Google Scholar 

  • Baran, G.J., Bloomfield, V.A.: Tail-fiber attachment in bacteriophage T4D studied by quasielastic light scattering-band electrophoresis. Biopolymers 17, 2015–2028 (1978)

    Article  CAS  Google Scholar 

  • Chang, R.Y.K., Wallin, M., Lin, Y., Leung, S.S.Y., Wang, H., Morales, S., Chan, H.K.: Phage therapy for respiratory infections. Adv. Drug Deliver Rev. 133, 76–86 (2018)

    Article  CAS  Google Scholar 

  • Chen, B.Y., Lim, H.C.: Bioreactor studies on temperature induction of the Q-mutant of bacteriophage λ in Escherichia coli. J. Biotechnol. 51, 1–20 (1996)

    Article  CAS  Google Scholar 

  • Cisek, A.A., Dabrowska, I., Gregorczyk, K.P., Wyzewski, Z.: Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr. Microbiol. 74(2), 277–283 (2014)

    Article  CAS  Google Scholar 

  • Cuervo, A., Carrascosa, J.L. (eds.): Bacteriophages: Structure. Wiley, Hoboken (2012)

    Google Scholar 

  • de Czekala, A., Luk, D., Bartl, P.: Large-scale production of lambda Bacteriophage and purified lambda deoxyribonucleic acid. Appl. Microbiol. 23(4), 791–796 (1972)

    Article  Google Scholar 

  • Domingues, L., Vicente, A.A., Lima, N., Teixeira, J.A.: Applications of yeast flocculation in biotechnological processes. Biotechnol. Bioprocess Eng. 5, 288–305 (2000)

    Article  CAS  Google Scholar 

  • Farr, R., Choi, D.S., Lee, S.W.: Phage-based nanomaterials for biomedical applications. Acta Biomater. 10(4), 1741–1750 (2014)

    Article  CAS  Google Scholar 

  • Fijałkowski, K., Żywicka, A., Drozd, R., Niemczyk, A., Junka, A.F., Peitler, D., Kordas, M., Konopacki, M., Szymczyk, P., El Fray, M., Rakoczy, R.: Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohyd. Polym. 133, 52–60 (2015)

    Article  CAS  Google Scholar 

  • Fister, S., Mester, P., Witte, A.K., Sommer, J., Schoder, D., Rossmanith, P.: Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci. Tech. 90, 170–174 (2019)

    Article  CAS  Google Scholar 

  • Gill, J.J., Hyman, P.: Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol. 11(1), 2–14 (2010)

    Article  CAS  Google Scholar 

  • Grieco, S.H.H., Lee, S., Dunbar, S.W., MacGillivray, R.T.A., Curtis, S.B.: Maximizing fila-mentous phage yield during computer controlled fermentation. Bioprocess Biosyst. Eng. 32, 773–779 (2009)

    Article  CAS  Google Scholar 

  • Herada, L.K., Silva, E.C., Campos, W.F., del Fiol, F.S., Vila, M., Dąbrowska, K., Krylov, V.N., Balcão, V.M.: Biotechnological applications of bacteriophages: state of the art. Microbiol. Res. 212–213, 38–58 (2018)

    Article  CAS  Google Scholar 

  • Hyman, P., Abedon, S.T.: Practical methods for determining phage growth parameters. Methods Mol. Biol. 501, 175–202 (2009)

    Article  CAS  Google Scholar 

  • Kakasis, A., Panitsa, G.: Bacteriophage therapy as an alternative treatment for human in-fections. A comprehensive review. Int. J. Antimicrob. Ag. 53, 16–21 (2019)

    Article  CAS  Google Scholar 

  • Kilcher, S., Loessner, M.J.: Engineering Bacteriophages as versatile biologics. Trends Microbiol. 27(4), 355–367 (2019)

    Article  CAS  Google Scholar 

  • Kim, T.S., Park, T.H.: Optimization of bacteriophage λ Q-contatin recombinant Escherichia coli fermentation process. Bioprocess. Eng. 23, 187–190 (2000)

    CAS  Google Scholar 

  • Konopacka, A., Rakoczy, R., Konopacki, M.: The effect of rotating magnetic field on bio-ethanol production by yeast strain modified by ferrimagnetic nanoparticles. J. Magn. Magn. Mater. 473, 176–183 (2019)

    Article  CAS  Google Scholar 

  • Konopacki, M., Rakoczy, R.: The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem. Eng. J. 141, 259–267 (2019)

    Article  CAS  Google Scholar 

  • Kropinski, A.M.: Bacteriophage research - what we have learnt and what still needs to be addressed. Res. Microbiol. 169, 481–487 (2018)

    Article  Google Scholar 

  • Latz, S., Wahida, A., Arif, A., Häfner, H., Hoß, M., Ritter, K., Horz, H.P.: Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria. J. Basic Micro-biol. 56(10), 1117–1123 (2016). https://doi.org/10.1002/jobm.201600108

    Article  CAS  Google Scholar 

  • Leiman, P.G., Shneider, M.M.: Contractile tail machines of bacteriophages. In: Michael Rossmann, G., Venigalla Rao, B. (eds.) Viral Molecular Machines, Advances in Experimental Medicine and Biology, vol. 726, pp. 1–978 Ch. 5. Springer (2012). ISBN 978-1-4614-0979-3

    Google Scholar 

  • Martinez, B., Garcia, P., Rodriguez, A.: Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Curr. Opin. Biotechnol. 56, 1–6 (2018)

    Article  CAS  Google Scholar 

  • Merzlyak, A., Lee, S.W.: Phage as templates for hybrid materials and mediators for nano-material synthesis. Curr. Opin. Chem. Biol. 10(3), 246–252 (2006)

    Article  CAS  Google Scholar 

  • Monteiro, R., Pires, D.P., Costa, A.R., Azeredo, J.: Phage therapy: going temperate? Trends Microbiol. (2018)

    Google Scholar 

  • Nobrega, F.L., Costa, A.R., Kluskens, L.D., Azeredo, J.: Revisiting phage therapy: new applications for old resources. Trends Microbiol. 23(4), 185–191 (2015)

    Article  CAS  Google Scholar 

  • Oh, J.S., Cho, D., Park, T.H.: Two-stage continuous operation of recombinant Escherichia coli using the bacteriophage λ Q vector. Bioprocess Biosys. Eng. 28, 1–7 (2005)

    Article  CAS  Google Scholar 

  • Park, S.H., Park, T.H.: Analysis of two-stage continuous operation of Escherichia coli containing bacteriophage λ vector. Bioprocess. Eng. 23, 557–563 (2000)

    Article  CAS  Google Scholar 

  • Rakoczy, R., Przybył, A., Kordas, M., Konopacki, M., Drozd, R., Fijałkowski, K.: The study of influence of a rotating magnetic field on mixing efficiency. Chem Eng. Process. Process Intensification 112, 1–8 (2017)

    Article  CAS  Google Scholar 

  • Richter, Ł., Janczuk-Richter, M., Niedziółka-Jönsson, J., Paczesny, J., Hołyst, R.: Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov. Today Technol. 23(2), 448–455 (2018)

    Article  CAS  Google Scholar 

  • Sargeant, K., Yeo, R.G., Lethbridge, J.H., Shooter, K.V.: Production of Bacteriophage T7. Appl. Microbiol. 16(10), 1483–1488 (1968)

    Article  CAS  Google Scholar 

  • Sauvageau, D., Cooper, D.G.: Two-stage, self-cycling process for the production of bacteriophages. Microb. Cell Fact. 9, 81 (2010)

    Article  CAS  Google Scholar 

  • Skurnik, M., Strauch, E.: Phage therapy: facts and fiction. Int. J. Med. Microb. 296, 5–14 (2006)

    Article  CAS  Google Scholar 

  • Struk, M., Grygorcewicz, B., Nawrotek, P., Augustyniak, A., Konopacki, M., Kordas, M., Rakoczy, R.: Enhancing effect of 50 Hz rotating magnetic field on induction of Shiga toxin-converting lambdoid prophages. Microb. Pathog. 109, 4–7 (2017)

    Article  CAS  Google Scholar 

  • Twort, F.W., L.R.C.P. Lond., M.R.C.S.: An investigation on the nature of ultra-microscopic viruses. Bacteriophage 1(3), 127–129 (2011)

    Google Scholar 

  • Wang, Z., Liu, X., Ni, S.Q., Zhang, J., Zhang, X., Ahmad, H.A., Gao, B.: Weak magnetic field: a powerful strategy to enhance partial nitrification. Water Res. 120, 190–198 (2017)

    Article  CAS  Google Scholar 

  • Warner, C.M., Barker, N., Lee, S.W., Perkins, E.J.: M13 bacteriophage production for large-scale applications. Bioprocess Biosyst. Eng. 37, 2067–2072 (2014)

    Article  CAS  Google Scholar 

  • Weber-Dabrowska, B., Jonczyk-Matysiak, E., Zaczek, M., Łobocka, M., Łusiak-Szelachowska, M., Górski, A.: Bacteriophage procurement for therapeutic purposes. Front. Microb. 7, 1177 (2016)

    Google Scholar 

  • Zarasvand, K.A., Rai, V.R.: Microorganisms: induction and inhibition of corrosion in met-als. Int. Biodeterior. Biodegr. 87, 66–74 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Centre, Poland [OPUS 16, Project No. UMO-2018/31/B/ST8/03170, granted to Rafal Rakoczy].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Konopacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konopacki, M., Grygorcewicz, B., Kordas, M., Dołęgowska, B., Rakoczy, R. (2020). Methods of Bacteriophages Production with Application of Alternate Magnetic Field. In: Ochowiak, M., Woziwodzki, S., Mitkowski, P., Doligalski, M. (eds) Practical Aspects of Chemical Engineering. PAIC 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-39867-5_18

Download citation

Publish with us

Policies and ethics