Skip to main content

Using Paramagnetic Probes to Study Structural Transitions in Proteins

  • Chapter
  • First Online:
Electron Paramagnetic Resonance Spectroscopy
  • 1040 Accesses

Abstract

When a nitroxide radical is bound to a protein in solution, the shape of its spectrum and its relaxation properties depend on its interactions with its environment. These “paramagnetic probes” can be used to study structural transitions in proteins, which are very important phenomena which are currently poorly understood. By labelling an appropriately selected site, it is possible, for example, to monitor conformational changes in an enzyme induced by its interaction with its physiological partners. It is also possible to draw a “mobility map” to identify the domain involved in folding of an “intrinsically disordered protein” induced by its interaction with another protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloulou A. et al. (2006) Biochimica et Biophysica Acta 1761: 995-1013.

    Google Scholar 

  • Altenbach C. et al. (1989) Biochemistry 28: 7806-7812.

    Google Scholar 

  • Altenbach C. et al. (2005) Biophysical Journal 89: 2103-2112.

    Google Scholar 

  • Altenbach C. et al. (1994) Proceeding of the National Academy of Sciences of the USA 91: 1667-1671.

    Google Scholar 

  • Altenbach C. et al. (2008) Proceeding of the National Academy of Sciences of the USA 105: 7439-7444.

    Google Scholar 

  • Altenbach C. et al. (1990) Science 248: 1088-1092.

    Google Scholar 

  • Barnes J.P. et al. (1999) Biophysical Journal 76: 3298-3306.

    Google Scholar 

  • Belle V. et al. (2007) Biochemistry 46: 2205-2214.

    Google Scholar 

  • Belle V. et al. (2008) Proteins: Structure, Function and Bioinformatics 73: 973-988.

    Google Scholar 

  • Belle V. et al. (2009) « Assessing Structures and Conformations of Intrinsically Disordered Proteins » in Site-directed spin labeling EPR spectroscopy, Uversky V.N. ed., John Wiley and Sons, New Jersey.

    Google Scholar 

  • Bezzine S. et al. (1999) Biochemistry 38: 5499-5510.

    Google Scholar 

  • Bourhis J.M. et al. (2006) Virology 344: 94-110.

    Google Scholar 

  • Bourhis J.M. et al. (2005) Protein Science 14: 1975-1992.

    Google Scholar 

  • Bridges M.D. et al. (2010) Applied Magnetic Resonance 37: 363-390.

    Google Scholar 

  • Budil D.E. et al. (1996) Journal of Magnetic Resonance Series A 120: 155-189.

    Google Scholar 

  • Columbus L. & Hubbell W.L. (2002) Trends in Biochemical Sciences 27: 288-295.

    Google Scholar 

  • Columbus L. et al. (2001) Biochemistry 40: 3828-3846.

    Google Scholar 

  • Doebber M. et al. (2008) Journal of Biological Chemistry 283: 28691-28701.

    Google Scholar 

  • Drescher M. et al. (2008) Journal of the American Chemical Society 130: 7796-7797.

    Google Scholar 

  • Dunker A.K. et al. (2005) FEBS Journal 272: 5129-5148.

    Google Scholar 

  • Dyson H.J. & Wright P.E. (2002) Current Opinion in Structural Biology 12: 54-60.

    Google Scholar 

  • Dyson H.J. & Wright P.E. (2005) Nature Reviews Molecular Cell Biology 6: 197-208.

    Google Scholar 

  • Fanucci G.E. & Cafiso D.S. (2006) Current Opinion in Structural Biology 16: 644-653.

    Google Scholar 

  • Fanucci G.E. et al. (2003) Biochemistry 42: 1391-1400.

    Google Scholar 

  • Fink A.L. (2005) Current Opinion in Structural Biology 15: 35-41.

    Google Scholar 

  • Fleissner M.R. et al. (2009) Protein Science 18: 893-908.

    Google Scholar 

  • Freed J.H. (1976) « Theory of slow tumbling ESR spectra for nitroxides » in Spin labeling: theory and applications, Berliner L. J., ed., Academic Press, New York.

    Chapter  Google Scholar 

  • Goldman A. et al. (1972) Journal of Chemical Physics 56: 716-735.

    Google Scholar 

  • Griffith O.H. & McConnell H.M. (1966) Proceeding of the National Academy of Sciences of the USA 55: 8-11.

    Google Scholar 

  • Guo Z.F. et al. (2008) Protein Science 17: 228-239.

    Google Scholar 

  • Guo Z.F. et al. (2007) Protein Science 16: 1069-1086.

    Google Scholar 

  • Haas D.A. et al. (1993) Biophysical Journal 64: 594-604.

    Google Scholar 

  • Hubbell W.L. et al. (1998) Current Opinion in Structural Biology 8: 649-656.

    Google Scholar 

  • Hubbell W.L. et al. (1996) Structure 4: 779-783.

    Google Scholar 

  • Jeschke G. (2002) ChemPhysChem 3: 927-932.

    Article  Google Scholar 

  • Jeschke G. et al. (2005) Journal of Biological Chemistry 280: 18623-18630.

    Google Scholar 

  • Jeschke G. et al. (2006) Applied Magnetic Resonance 30: 473-498.

    Google Scholar 

  • Johansson K. et al. (2003) Journal of Biological Chemistry 278: 44567-44573.

    Google Scholar 

  • Kaplan R.S. et al. (2000) Biochemistry 39: 9157-9163.

    Google Scholar 

  • Karlin D. et al. (2002) Virology 302: 420-432.

    Google Scholar 

  • Kavalenka A. et al. (2010) Biophysical Journal 98: 1055-1064.

    Google Scholar 

  • Kim M. et al. (2007) Proceeding of the National Academy of Sciences of the USA 104: 11975-11980.

    Google Scholar 

  • Kingston R.L. et al. (2004) Proceeding of the National Academy of Sciences of the USA 101: 8301-8306.

    Google Scholar 

  • Klare J.P. & Steinhoff H.J. (2009) Photosynthesis Research 102: 377-390.

    Google Scholar 

  • Klug C.S. et al. (1998) Biochemistry 37: 9016-9023.

    Google Scholar 

  • Klug C.S. & Feix J.B. (2008) Biophysical Tools for Biologists Vol 1 in Vitro Techniques 84: 617-658.

    Google Scholar 

  • Kreimer D.I. et al. (1994) Proceeding of the National Academy of Sciences of the USA 91: 12145-12149.

    Google Scholar 

  • Langen R. et al. (2000) Biochemistry 39: 8396-8405.

    Google Scholar 

  • Lin Y. et al. (1998) Science 279: 1925-1929.

    Google Scholar 

  • Longhi S. et al. (2003) Journal of Biological Chemistry 278: 18638-18648.

    Google Scholar 

  • Marsh D. et al. (2006) Biophysical Journal 90: 49-51.

    Google Scholar 

  • Marsh D. et al. (2002) Chemistry and Physics of Lipids 116: 93-114.

    Google Scholar 

  • Mchaourab H.S. et al. (1996) Biochemistry 35: 7692-7704.

    Google Scholar 

  • Merianos H.J. et al. (2000) Nature Structural Biology 7: 205-209.

    Google Scholar 

  • Morin B. et al. (2006) Journal of Physical Chemistry B 110: 20596-20608.

    Google Scholar 

  • Pannier M. et al. (2000) Journal of Magnetic Resonance 142: 331-340.

    Google Scholar 

  • Perozo E. et al. (1999) Science 285: 73-78.

    Google Scholar 

  • Pistolesi S. et al. (2006) Biophysical Chemistry 123: 49-57.

    Google Scholar 

  • Pyka J. et al. (2005) Biophysical Journal 89: 2059-2068.

    Google Scholar 

  • Qu K. et al. (1997) Biochemistry 36: 2884-2897.

    Google Scholar 

  • Rabenstein M.D. & Sgin Y.K. (1995) Proceeding of the National Academy of Sciences of the USA 92: 8239-8243.

    Google Scholar 

  • Ranaldi S. et al. (2010) Biochemistry 49: 2140-2149.

    Google Scholar 

  • Ranaldi S. et al. (2009) Biochemistry 48: 630-638.

    Google Scholar 

  • Steinhoff H.J. et al. (1994) Science 266: 105-107.

    Google Scholar 

  • Steinhoff H.J. et al. (1997) Biophysical Journal 73: 3287-3298.

    Google Scholar 

  • Stoll S. & Schweiger A. (2006) Journal of Magnetic Resonance 178: 42-55.

    Google Scholar 

  • Jones T.J. et al. (1965) Proceeding of the National Academy of Sciences of the USA 54: 1010-1017.

    Google Scholar 

  • Stopar D. et al. (2005) Journal of Chemical Information and Modeling 45: 1621-1627.

    Google Scholar 

  • Stopar D. et al. (2006) Biophysical Journal 91: 3341-3348.

    Google Scholar 

  • Strancar J. et al. (2005) Journal of Chemical Information and Modeling 45: 394-406.

    Google Scholar 

  • Sugata K. et al. (2009) Journal of Molecular Biology 386: 626-636.

    Google Scholar 

  • Thirstrup K. et al. (1993) FEBS Letters 327: 79-84.

    Google Scholar 

  • Thorgeirsson T.E. et al. (1997) Journal of Molecular Biology 273: 951-957.

    Google Scholar 

  • Timofeev V.P. & Tsetlin V.I. (1983) Biophysics of Structure and Mechanisms 10: 93-108.

    Google Scholar 

  • Tompa P. (2002) Trends in Biochemical Sciences 27: 527-533.

    Article  Google Scholar 

  • Tsai C.D. et al. (2001) Critical Reviews in Biochemistry and Molecular Biology 36: 399-433.

    Google Scholar 

  • Uversky V.N. et al. (2005) Journal of Molecular Recognition 18: 343-384.

    Google Scholar 

  • van Tilbeurgh H. et al. (1992) Nature 359: 159-162.

    Google Scholar 

  • van Tilbeurgh H. et al. (1993) Journal of Molecular Biology 229: 552-554.

    Google Scholar 

  • Volume 1: Bertrand P. (2020) Electron Paramagnetic Resonance Spectroscopy - Fundamentals, Springer, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belle, V., Fournel, A. (2020). Using Paramagnetic Probes to Study Structural Transitions in Proteins. In: Electron Paramagnetic Resonance Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-39668-8_8

Download citation

Publish with us

Policies and ethics