Skip to main content

Ferromagnetic Resonance Spectroscopy: Basics and Applications

  • Chapter
  • First Online:
Electron Paramagnetic Resonance Spectroscopy

Abstract

Ferromagnetic resonance (FMR) uses the same equipment as EPR to study strong interactions between spins characterising crystallised ferromagnetic materials. The parameters describing these very anisotropic interactions are deduced from the variation in the position of the resonance line as a function of the direction of the applied magnetic field. This technique is illustrated by experiments performed on several types of nano structured materials: Fe films deposited by epitaxy on GaAs, thin layers of semiconductors doped with Mn2+ and ferrofluids. Its applications relate to magnetic recording, spintronics, and biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloul, H. (2011) Introduction to the Physics of Electrons in Solids, Springer, Heidelberg, London, New York.

    Google Scholar 

  • Ando K. et al. (2009) Applied Physics Letters 94: 262505-26507.

    Google Scholar 

  • Artmann J.O. (1957) (a) Physical Review 105: 62-73.

    Google Scholar 

  • Artmann J.O. (1957) (b) Physical Review 105: 74-84.

    Google Scholar 

  • Belmeguenai M. et al. (2010) Journal of Applied Physics 108: 63926-63932.

    Google Scholar 

  • Belmeguenai M. et al. (2011) Journal of Applied Physics 109: 7C120-7C123.

    Google Scholar 

  • Bickford L.R. Jr. (1950) Physical Review 78: 449-454.

    Google Scholar 

  • Bloembergen N. (1950) Physical Review 78: 572-580.

    Article  ADS  Google Scholar 

  • Brown W.F. Jr. (1963) Physical Review 130: 1677-1686.

    Article  ADS  Google Scholar 

  • Callen H.B. & Callen E. (1996) Journal of Physics and Chemistry of Solids 27: 1271-1285.

    Google Scholar 

  • Chen L. et al. (2009) Applied Physics Letters 95: 182505-182508.

    Google Scholar 

  • Cubukcu M. et al. (2010) Physical Review B 81: 41202-41206.

    Google Scholar 

  • de Biasi R.S. & Devezas (1978) Journal of Applied Physics 49: 2466-2469.

    Google Scholar 

  • Dziatkowski K. et al. (2004) Physical Review B 70: 115202-115214.

    Google Scholar 

  • Fang D. et al. (2011) Nature Nanotechnology 6: 413-417.

    Google Scholar 

  • Farle M. (1998) Reports on Progress in Physics 61: 755-826.

    Google Scholar 

  • Frasca G et al. (2011) Reflets de la Physique revue de la Société Française de Physique 23: 6-10.

    Google Scholar 

  • Gazeau F. (1997) PhD thesis, Magnetic and Brownian dynamics of nanoparticles in a ferrofluid, Université Paris 7 Denis Diderot.

    Google Scholar 

  • Gazeau F. et al. (1998) Journal of Magnetism and Magnetic Materials 186: 175-187.

    Google Scholar 

  • Gazeau F. et al. (1999) Journal of Magnetism and Magnetic Materials 202: 535-546.

    Google Scholar 

  • Gilbert T.L (1956) Ph.D thesis “ Formulation, Foundations and Applications of the Phenomenological Theory of Ferromagnetism “ Illinois Institut of Technology.

    Google Scholar 

  • Gilbert T.L. (2004) IEEE Transactions on Magnetics 40: 3443-3449.

    Article  ADS  MathSciNet  Google Scholar 

  • Griffiths J.H.E (1946) Nature 158: 670-671.

    Article  ADS  Google Scholar 

  • Healy D.W Jr (1952) Physical Review 86: 1009-1013.

    Article  ADS  Google Scholar 

  • Heinrich B. & Bland J.A.C. (2005) Ultrathin Magnetic Structures II-III, Springer, Heidelberg.

    Google Scholar 

  • Heinrich B. et al. (2011) Physical Review Letters 107: 66604-66608.

    Google Scholar 

  • Herpin A. (1968) Théorie du magnétisme, Presses Universitaires de France, Paris.

    Google Scholar 

  • Jungwirth T. et al. (2006) Review of Modern Physics 78: 809-864.

    Google Scholar 

  • Khazen Kh. et al. (2008) (a) Physical Review B 77: 165204-165219.

    Google Scholar 

  • Khazen Kh. et al. (2008) (b) Physical Review B 78: 195210-195218.

    Google Scholar 

  • Kip A.F. & Arnold R.D. (1949) Physical Review 75: 1556-1560.

    Google Scholar 

  • Kittel C. (1947) Physical Review 71: 270-271.

    Article  ADS  Google Scholar 

  • Kittel C. (1948) Physical Review 73: 155-161.

    Article  ADS  Google Scholar 

  • Kopec M. et al. (2009) Chemical Physics 21: 2525-2533.

    Google Scholar 

  • Kuanr B.K. et al. (2003) Journal of Applied Physics 93: 7723-7726.

    Google Scholar 

  • Landau L. & Lifshitz E. (1935) Physikalische Zeitschrift den Sovjetunion 8: 153-169.

    Google Scholar 

  • Lemaitre A. et al. (2009) Applied Physics Letters 93: 21123-21126.

    Google Scholar 

  • Lévy M. et al. (2010) Nanotechnology 21: 395103-395114 and references therein.

    Google Scholar 

  • Liu X. et al. (2003) Physical Review B 67: 205204-205216.

    Google Scholar 

  • Liu X. & Furdyna J.K. (2006) Journal of Physics: Condensed Matter 18: R245-R279.

    Google Scholar 

  • Du Trémolet de Lacheisserie E. (2004) Magnetism I: fundamentals, Springer, Heidelberg, London, New York.

    Google Scholar 

  • Mott N. (1982) Proceedings of the Royal Society (London) 1382: 1-24.

    Google Scholar 

  • Néel L. (1949) Comptes Rendus de l’Académie des Sciences 228: 664-668.

    Google Scholar 

  • Néel L. (1954) Journal de Physique et le Radium 15: 225-239.

    Article  Google Scholar 

  • Ohno H. et al. (1992) Physical Review Letters 68: 2664-2667.

    Google Scholar 

  • Raikher Y.L. & Shliomis M.I. (1974) Sovjet Physics JETP 40: 526-532.

    Google Scholar 

  • Raikher Y.L. & Stepanov V.I. (1994) Physical Review B 50: 6250-6259.

    Google Scholar 

  • Smit J. & Beljers H.G. (1955) Philips Research Reports 10: 113-130.

    Google Scholar 

  • Song C. et al. (2011) Physical Review Letters 107: 56601- 56605.

    Google Scholar 

  • Tannewald P.E. (1955) Physical Review 100: 1713-1719.

    Google Scholar 

  • Thevenard L. et al. (2005) Applied Physics Letters 87: 182506-182509.

    Google Scholar 

  • Van Vleck J.H. (1950) Physical Review 78: 266-274.

    Article  ADS  Google Scholar 

  • Volume 1: Bertrand P. (2020) Electron Paramagnetic Resonance Spectroscopy - Fundamentals, Springer, Heidelberg.

    Google Scholar 

  • Wastlbauer G. et al. (2005) Advances In Physics 54: 137-219.

    Google Scholar 

  • Wilhelm C. et al. (2007) Physical Review E 75: 41906-41912.

    Google Scholar 

  • Yager W.A. et al. (1950) Physical Review 80: 744-748.

    Google Scholar 

  • Zakeri Kh. et al. (2006) Phase Transitions, Magnetic anisotropy in nanoscaled materials probed by ferromagnetic resonance, Taylor & Francis Ltd, 79: 793- 813.

    Google Scholar 

  • Zakeri Kh. (2007) Magnetic monolayers on semiconducting substrates: an in situ FMR study of Fe-based heterostructures, PhD thesis, Universität Duisburg-Essen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Bardeleben, H.J., Cantin, J.L., Gendron, F. (2020). Ferromagnetic Resonance Spectroscopy: Basics and Applications. In: Electron Paramagnetic Resonance Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-39668-8_12

Download citation

Publish with us

Policies and ethics