Skip to main content

Viscous Compressible Flows Under Pressure

  • Chapter
  • First Online:
Fluids Under Pressure

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 793 Accesses

Abstract

This chapter deals with the role of pressure in the theory of viscous compressible flows. The pressure state laws and viscosities are described. Special attention is devoted to non-monotone pressure laws and pressure dependent viscosities. The global existence proofs are discussed for approximate systems. Some relevant physical applications are described, including among others the anelastic Euler equations, shallow water model, granular media, or mixture problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. P. Antonelli, S. Spirito. Global existence of weak solutions to the Navier-Stokes-Korteweg equations. ArXiv:1903.02441 (2019).

    Google Scholar 

  2. P. Antonelli, S. Spirito. On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids. ArXiv:1808.03495 (2018).

    Google Scholar 

  3. P. Antonelli, S. Spirito. Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations. Archive of Rational Mechanics and Analysis, 225 (2017), no. 3, 1161–1199.

    Article  MathSciNet  Google Scholar 

  4. P. Antonelli, S. Spirito. On the compactness of finite energy weak solutions to the Quantum Navier-Stokes equations. J. of Hyperbolic Differential Equations, 15 (2018), no. 1, 133–147.

    Article  MathSciNet  Google Scholar 

  5. F. Ben Belgacem, P.–E. Jabin. Compactness for nonlinear continuity equations. J. Funct. Anal, 264, no. 1, 139–168, (2013).

    Google Scholar 

  6. F. Ben Belgacem, P.–E. Jabin. Convergence of numerical approximations to non-linear continuity equations with rough force fields. Submitted (2018).

    Google Scholar 

  7. D. Bresch, F. Couderc, P. Noble, J.–P. Vila. A generalization of the quantum Bohm identity: hyperbolic CFL condition for Euler-Korteweg equations. C.R. Acad. Sciences Paris. volume 354, Issue 1, 39–43, (2016).

    Google Scholar 

  8. D. Bresch, B. Desjardins. Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238 (2003), no.1-3, 211–223.

    Article  MathSciNet  Google Scholar 

  9. D. Bresch and B. Desjardins. On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J. Math. Pures Appl. (9) 86 (2006), no. 4, 362–368.

    Google Scholar 

  10. D. Bresch, B. Desjardins. Quelques modèles diffusifs capillaires de type Korteweg. C. R. Acad. Sci. Paris, section mécanique, 332, no. 11, 881–886, (2004).

    Google Scholar 

  11. D. Bresch, B. Desjardins. Weak solutions via the total energy formulation and their quantitative properties - density dependent viscosities. In: Y. Giga, A. NovotnĂ˝ (Ă©ds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Berlin (2017).

    Google Scholar 

  12. D. Bresch, B. Desjardins. On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat-conducting fluids. J. Math. Pures et Appl., 57–90 (2007).

    Google Scholar 

  13. D. Bresch, B. Desjardins, Chi-Kun Lin. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations 28, no. 3-4, 843–868, (2003).

    Google Scholar 

  14. D. Bresch, B. Desjardins, D. Gérard-Varet. On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87 (9), 227–235 (2007).

    Article  MathSciNet  Google Scholar 

  15. D. Bresch, B. Desjardins, J.–M. Ghidaglia, E. Grenier. Global weak solutions to a generic two-fluid model. Arch. Rational Mech. Analysis. 196, Issue 2, 599–629, (2010).

    Google Scholar 

  16. D. Bresch, B. Desjardins, E. Zatorska. Two-velocity hydrodynamics in Fluid Mechanics, Part II. Existence of global κ-entropy solutions to compressible Navier-Stokes system with degenerate viscosities. J. Math. Pures Appl. Volume 104, Issue 4, 801–836 (2015).

    Google Scholar 

  17. D. Bresch, P.-E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. of Math. (2) 188, no. 2, 577–684 (2018).

    Google Scholar 

  18. D. Bresch, P.–E. Jabin. Quantitative regularity estimates for compressible transport equations. New trends and results in mathematical description of fluid flows. Birkhauser 77–113, (2018).

    Google Scholar 

  19. D. Bresch, P.–E. Jabin. Quantitative regularity estimates for advective equation with anelastic degenerate constraint. Proc. Int. Cong. of Math, 2161–2186 (2018).

    Google Scholar 

  20. D. Bresch, P.–E. Jabin, F. Wang. On heat-conducting Navier-Stokes equations with a truncated virial pressure state law. In preparation (2019).

    Google Scholar 

  21. D. Bresch, I. Lacroix-Violet, M. Gisclon. On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models. To appear in Arch. Rational Mech. Anal. (2019).

    Google Scholar 

  22. D. Bresch, P. Mucha, E. Zatorska. Finite-energy solutions for compressible two-fluid Stokes system. Arch. Rational Mech. Anal., 232, Issue 2, 987–1029, (2019).

    Google Scholar 

  23. D. Bresch, A. Vasseur, C. Yu. Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities. Submitted (2019).

    Google Scholar 

  24. R. Carles, K. Carrapatoso, M. Hillairet. Rigidity results in generalized isothermal fluids. Annales Henri Lebesgue, 1, (2018), 47–85.

    Article  MathSciNet  Google Scholar 

  25. E. Feireisl. Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.

    Google Scholar 

  26. E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech.3 (2001), 358–392.

    Article  MathSciNet  Google Scholar 

  27. E. Feireisl. Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law. J. Diff. Eqs 183, no 1, 97–108, (2002).

    Google Scholar 

  28. E. Feireisl, A. Vasseur. New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner. New directions in mathematical fluid mechanics, 153–179, Adv. Math. Fluid Mech., Birkhauser Verlag, Basel, 2010.

    Google Scholar 

  29. S. Gavrilyuk, S.M. Shugrin Media with equations of state that depend on derivatives. J. Applied Mech. Physics, vol. 37, No2, (1996).

    Google Scholar 

  30. Z. Guo, Q. Jiu, Z. Xin. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39, no. 5, 1402–1427, (2008).

    Google Scholar 

  31. S. Jiang, Z. Xin, P. Zhang. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal. 12, no. 3, 239–251, (2005).

    Google Scholar 

  32. S. Jiang, P. Zhang. On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys. 215, no. 3, 559–581, (2001).

    Google Scholar 

  33. A. Jüngel. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J. Math. Anal. 42, no. 3, 1025–1045, (2010).

    Google Scholar 

  34. A. Jüngel, D. Matthes. The Derrida–Lebowitz-Speer-Spohn equations: Existence, uniqueness, and Decay rates of the solutions. SIAM J. Math. Anal., 39(6), 1996–2015, (2008).

    Article  MathSciNet  Google Scholar 

  35. I. Lacroix-Violet, A. Vasseur. Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit. J. Math. Pures Appl. (9) 114, 191–210, (2018).

    Google Scholar 

  36. J. Leray. Sur le mouvement d’un fluide visqueux remplissant l’espace, Acta Math. 63, 193–248, (1934).

    Article  MathSciNet  Google Scholar 

  37. J. Li, Z.P. Xin. Global Existence of Weak Solutions to the Barotropic Compressible Navier-Stokes Flows with Degenerate Viscosities. arXiv:1504.06826 (2015).

    Google Scholar 

  38. P.-L. Lions.Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

    Google Scholar 

  39. D. Maltese, M. Michalek, P. Mucha, A. Novotny, M. Pokorny, E. Zatorska. Existence of weak solutions for compressible Navier-Stokes with entropy transport. J. Differential Equations, 261, No. 8, 4448–4485 (2016)

    Article  MathSciNet  Google Scholar 

  40. A. Mellet, A. Vasseur. On the barotropic compressible Navier-Stokes equations. Comm. Partial Differential Equations 32 (2007), no. 1-3, 431–452.

    Article  MathSciNet  Google Scholar 

  41. P.B. Mucha, M. Pokorny, E. Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete Contin. Dyn. Syst. Ser. S, 7, No. 5 , 1079–1099 (2014).

    Google Scholar 

  42. A. Novotny. Weak solutions for a bi-fluid model of a mixture of two compressible non interacting fluids. Submitted (2018).

    Google Scholar 

  43. A. Novotny, M. Pokorny. Weak solutions for some compressible multi-component fluid models. Submitted (2018).

    Google Scholar 

  44. C. Perrin. Pressure Dependent Viscosity Model for Granular Media Obtained from Compressible Navier-Stokes Equations. Appl Math Res Express, vol. 2016, Iss. 2, p. 289–333 (2016).

    Google Scholar 

  45. C. Perrin. An overview on congestion phenomena in fluid equations. Proceeding Journées EDP 2018. See hal-01994880

    Google Scholar 

  46. P.I. Plotnikov, W. Weigant. Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47 (2015), no. 1, 626–653.

    Article  MathSciNet  Google Scholar 

  47. F. Rousset. Solutions faibles de l’équation de Navier-Stokes des fluides compressible [d’après A. Vasseur et C. Yu]. Séminaire Bourbaki, 69ème année, 2016–2017, no 1135.

    Google Scholar 

  48. S.M. Shugrin. Two-velocity hydrodynamics and thermodynamics. J. Applied Mech and Tech. Physics, 39, 522–537, (1994).

    Article  MathSciNet  Google Scholar 

  49. E.M. SteinHarmonic Analysis. Princeton Univ. Press 1995 (second edition).

    Google Scholar 

  50. V. A. Vaigant, A. V. Kazhikhov. On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. (Russian). Sibirsk. Mat. Zh. 36 (1995), no. 6, 1283–1316, ii; translation in Siberian Math. J. 36 (1995), no.6, 1108–1141.

    Google Scholar 

  51. A. Vasseur, C. Yu. Global weak solutions to compressible quantum Navier-Stokes equations with damping. SIAM J. Math. Anal. 48 (2016), no. 2, 1489–1511.

    Article  MathSciNet  Google Scholar 

  52. A. Vasseur, C. Yu. Existence of Global Weak Solutions for 3D Degenerate Compressible Navier-Stokes Equations. Inventiones mathematicae (2016), 1–40.

    Google Scholar 

  53. A. Vasseur, H. Wen, C. Yu. Global weak solution to the viscous two-phase model with finite energy. To appear in J. Math Pures Appl. (2018).

    Google Scholar 

Download references

Acknowledgements

D. Bresch is partially supported by SingFlows project, grand ANR-18-CE40-0027. P.–E. Jabin is partially supported by NSF DMS Grants 161453, 1908739 and NSF Grant RNMS (Ki-Net) 1107444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bresch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bresch, D., Jabin, PE. (2020). Viscous Compressible Flows Under Pressure. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Fluids Under Pressure. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-39639-8_2

Download citation

Publish with us

Policies and ethics