Skip to main content

Guided Layer-Wise Learning for Deep Models Using Side Information

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2019)

Abstract

Training of deep models for classification tasks is hindered by local minima problems and vanishing gradients, while unsupervised layer-wise pretraining does not exploit information from class labels. Here, we propose a new regularization technique, called diversifying regularization (DR), which applies a penalty on hidden units at any layer if they obtain similar features for different types of data. For generative models, DR is defined as divergence over the variational posteriori distributions and included in the maximum likelihood estimation as a prior. Thus, DR includes class label information for greedy pretraining of deep belief networks which result in a better weight initialization for fine-tuning methods. On the other hand, for discriminative training of deep neural networks, DR is defined as a distance over the features and included in the learning objective. With our experimental tests, we show that DR can help the backpropagation to cope with vanishing gradient problems and to provide faster convergence and smaller generalization errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  Google Scholar 

  2. Arnold, L., Ollivier, Y.: Layer-wise learning of deep generative models. CoRR abs/1212.1524 (2012). http://arxiv.org/abs/1212.1524

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19, 153 (2007)

    Google Scholar 

  4. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  5. Choi, E., Lee, C.: Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 36(8), 1703–1709 (2003)

    Article  Google Scholar 

  6. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  8. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: AISTATS, vol. 5, pp. 153–160 (2009)

    Google Scholar 

  9. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition and Cooperation in Neural Nets. LNBM, vol. 45, pp. 267–285. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9_18

    Chapter  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  11. Goudail, F., Réfrégier, P., Delyon, G.: Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images. JOSA A 21(7), 1231–1240 (2004)

    Article  Google Scholar 

  12. Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput. 2(2), 210–215 (1990)

    Article  Google Scholar 

  13. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  14. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  15. Jonschkowski, R., Höfer, S., Brock, O.: Contextual learning. CoRR abs/1511.06429 (2015). http://arxiv.org/abs/1511.06429

  16. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  19. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning, pp. 536–543. ACM (2008)

    Google Scholar 

  20. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

    MATH  Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  22. LeCun, Y., et al.: Generalization and network design strategies. Connect. Perspect. 143–155 (1989)

    Google Scholar 

  23. Neal, R.M.: Connectionist learning of belief networks. Artif. Intell. 56(1), 71–113 (1992). https://doi.org/10.1016/0004-3702(92)90065-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: AISTATS, vol. 1, p. 3 (2009)

    Google Scholar 

  25. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: AISTATs, vol. 9, pp. 693–700 (2010)

    Google Scholar 

  26. Sutskever, I., Hinton, G.E.: Deep, narrow sigmoid belief networks are universal approximators. Neural Comput. 20, 2629–2636 (2008)

    Article  Google Scholar 

  27. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1064–1071. ACM (2008)

    Google Scholar 

  28. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with application to clustering with side-information. In: NIPS, vol. 15, p. 12 (2002)

    Google Scholar 

  29. You, C.H., Lee, K.A., Li, H.: An SVM kernel with GMM-supervector based on the Bhattacharyya distance for speaker recognition. IEEE Signal Process. Lett. 16(1), 49–52 (2009)

    Article  Google Scholar 

  30. Yuille, A.L.: The convergence of contrastive divergences. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1593–1600. MIT Press (2005). http://papers.nips.cc/paper/2617-the-convergence-of-contrastive-divergences.pdf

Download references

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GTX Titan X GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Kertész-Farkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sulimov, P., Sukmanova, E., Chereshnev, R., Kertész-Farkas, A. (2020). Guided Layer-Wise Learning for Deep Models Using Side Information. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39575-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39574-2

  • Online ISBN: 978-3-030-39575-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics