Skip to main content

Thinnest Finishing Treatment with a Focused Jet of Electrolytic Plasma

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Abstract

The article presents the results of experimental data on the formation of thin layers of the surface of stainless steels by jet focused electrolyte-plasma treatment. An experimental electrolyte-plasma installation is shown, which makes it possible to remove the thinnest layers from the surface of samples using an electrolyte-plasma discharge. In the work, hollow and type-setting current leads were used. The surface roughness parameters during the processing of samples from 08X18H9T, AISI 304, and HVG stainless steels are studied. Samples with a low level of surface roughness were obtained. A decrease in the mass of samples after electrolyte-plasma treatment is shown. The minimum removal of metal from the surface of the samples was recorded. The theoretical regularities of the formation of the surface layer geometry are considered. The results of the work can be applied to metallurgical, machine-building or turbine production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babichev D, Storchak M (2018) Quality characteristics of gearing. Mech Mach Sci 51:73–90. https://doi.org/10.1007/978-3-319-60399-5_4

    Article  Google Scholar 

  2. Babichev D (2018) Development of geometric descriptors for gears and gear tools. Mech Mach Sci 51:231–254. https://doi.org/10.1007/978-3-31960399-5_11

    Article  Google Scholar 

  3. Eliseev VV, Moskalets AA (2018) Vibrations of turbine blades as elastic shells. Lecture notes in mechanical engineering, Part F5, pp 53–60. https://doi.org/10.1007/978-3-319-72929-9_7

    Chapter  Google Scholar 

  4. Zinovieva TV, Moskalets AA (2018) Modal analysis of turbine blade as one- and three-dimensional body. Lecture notes in mechanical engineering, PartF5, pp 195–204. https://doi.org/10.1007/978-3-319-72929-9_20

    Chapter  Google Scholar 

  5. Drozdov A, Galerkin Y (2017) The numerical study of the rake angle of impeller blade in centrifugal compressor. In: IOP conference series: materials science and engineering, vol 232, issue no 1, cтaтья № 012036. https://doi.org/10.1088/1757-899X/232/1/012036

    Article  Google Scholar 

  6. Kulikov IS, Vashenko SV, Kamenev AY (2010) Elektrolitno-plazmennaya obrabotka materialov [Electrolytic plasma processing of materials]. Belarusian science, Minsk, p 232. ISBN 978-985-08-1215-5 (in Russian)

    Google Scholar 

  7. Ushomirskaya LA, Veselovskiy AP (2010) Intensifikatsiya tekhnologicheskikh protsessov izgotovleniya detaley mashin pri ispolzovanii razlichnykh vidov energii [Intensification of technological processes of manufacturing machine parts using different types of energy]. Metalloobrabotka [Metalworking] 2(56):C.46 (in Russian)

    Google Scholar 

  8. Novikov VI, Popov AI, Tyukhtyayev MI, Zeydan MN (2011) Vozmozhnosti elektrolitno-plazmennogo polirovaniya pri obrabotke detaley s razlichnym nachalnym urovnem sherokhovatosti poverkhnosti [Possibilities of electrolyte-plasma polishing in the processing of parts with different initial levels of surface roughness]. Metalloobrabotka [Metalworking] 1(61):C.13 (in Russian)

    Google Scholar 

  9. Nestler K, Böttger-Hiller F, Adamitzki W, Glowa G, Zeidler H, Schubert A (2016) Plasma electrolytic polishing—an overview of applied technologies and current challenges to extend the polishable material range, Procedia CIRP 42(Isem Xviii):503–507. ISSN: 22128271, DOI:10.1016/j. procir.2016.02.240

    Google Scholar 

  10. Aliakseyeu YG, Korolyov AY, Parshuto AE, Niss VS (2017) Electrolyte-plasma treatment under non-stationary mode in a high-gradient electric field. Sci Tech 16:391–399. https://doi.org/10.21122/2227-1031-2017-16-5-391-399

    Article  Google Scholar 

  11. Fortov VE (2008) Encyclopedia of low-temperature plasma. High Temp 46:1–2. https://doi.org/10.1134/S0018151X0801001X

    Article  Google Scholar 

  12. Gaisin AF, Son EE (2005) Vapor-air discharges between electrolytic cathode and metal anode at atmospheric pressure. High Temp 43:1. https://doi.org/10.1007/s10740-005-0040-5

    Article  Google Scholar 

  13. Witzke M, Rumbach P, Go DB, Sankaran RM (202) Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions. J Phys D Appl Phys 45:5. https://doi.org/10.1088/0022-3727/45/44/44200

  14. Barinov YA, Shkolnik SM (2016) Razryad s zhidkim nemetallicheskim katodom (vodoprovodnaya voda) v potoke vozdukha atmosfernogo davleniya [Discharge with a liquid non-metallic cathode (tap water) in an atmospheric pressure air stream]. J Tech Phys 86(11):156 (in Russian)

    Google Scholar 

  15. Galimzyanov II, Gaisin AF, Fakhrutdinova IT, Shakirova EF, Akhatov MF, Kayumov RR Characteristics of the development of electric discharge between jet anode and liquid cathode. High Temp 56(2):296–298. https://doi.org/10.1134/s0018151x18020086

    Article  Google Scholar 

  16. Slovetskiy DI, Terentyev SD, Plekhanov VG (1986) Mekhanizm plazmenno-elektrolitnogo nagreva metallov [The mechanism of plasma-electrolyte heating of metals]. High Temp 24(2):353 (in Russian)

    Google Scholar 

  17. Dyakov IG, Shadrin SY, Belkin PN (2004) Osobennosti anodnogo nagreva pri dvizhenii elektrolita v rezhime svobodnoy konvektsii [Features of anode heating during electrolyte movement in free convection mode]. Electron Met Process 4:9 (in Russian)

    Google Scholar 

  18. Danilov I, Hackert-Oschätzchen M, Zinecker M, Meichsner G, Edelmann J, Schubert A (2019) Process understanding of plasma electrolytic polishing through multiphysics simulation and inline metrology. Micromachines 10:214. https://doi.org/10.3390/mi10030214

    Article  Google Scholar 

  19. Popov AI, Tyukhtyaev MI, Radkevich MM, Novikov VI (2016) Analiz teplovyh yavlenij pri strujnoj fokusirovannoj elektrolitno-plazmennoj obrabotke [The analysis of thermal phenomena occuring under jet focused electrolytic plasma processing]. The journal “Nauchno-tekhnicheskie vedomosti SPbGPU” (St. Petersburg State Polytechnical University Journal) 4(254):141 (in Russian)

    Google Scholar 

  20. Popov AI, Novikov VI, Radkevich MM (2019) Characteristics of the development of electric discharge between the jet electrolyte cathode and the metal anode at atmospheric pressure. High Temp 57(4):483–495

    Article  Google Scholar 

  21. Popov AI, Radkevich MM, Medko VS, Shilling NG, Rudavin AA Magnetronnaya raspylitel’naya golovka [Magnetron spraying head]. Patent for an invention Russian Federation № 2656318. IPC: C25F7/00. 04.04.2017

    Google Scholar 

  22. Novoselov MV, Shilling NG, Rudavin AA, Radkevich MM, Popov AI (2018) Otsenka vozmozhnosti polirovaniya nerzhaveyushchikh staley struynoy elektrolitno-plazmennoy obrabotkoy [Assessment of the possibility of polishing stainless steels by jet electrolytic—plasma treatment]. Bull PNIPU 1:95 (in Russian)

    Google Scholar 

  23. Popov AI, Radkevich MM, Novoselov MV (2019) Osobennosti elektrolitno-plazmennogo polirovaniya stentov [Features of electrolyte-plasma polishing of stents]. Tekhnologiya metallov [Metal technology] 5:18 (in Russian)

    Google Scholar 

  24. Ablyaz TR, Muratov KR, Radkevich MM, Ushomirskaya LA, Zarubin DA (2018) Electrolytic plasma surface polishing of complex components produced by selective laser melting. Russ Eng Res 38:491–492. https://doi.org/10.3103/S1068798X18060035

    Article  Google Scholar 

  25. Popov AI, Radkevich MM, Kudryavtsev VN, Zakharov SV, Kuzmichev IS Ustanovka dlya elektrolitno-plazmennoj obrabotki turbinnyh lopatok [Plant for electrolyte-plasma treatment of turbine blades]. Patent for an invention Russian Federation № 2623555. IPC: C25F7/00. 27.06.2017 (in Russian)

    Google Scholar 

  26. Gajsin AF Ustrojstvo dlya polucheniya elektricheskogo razryada [Electric charge generation method]. Patent of Russian Federation № 2457571. IPC: H01J13/02. 27.07.12 (in Russian)

    Google Scholar 

  27. Popov AI, Radkevich MM, Medko VS, Novoselov MV Ustrojstvo dlya elektrolitno-plazmennoj obrabotki metallicheskih izdelij [Device for electrolyte-plasma treatment of metal products]. Patent of Russian Federation № 2681239. IPC: C25F7/00. 13.06.2018 (in Russian)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to graphic designer Diana A. Popova.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popov, A.I., Radkevich, M.M., Teplukhin, V.G. (2020). Thinnest Finishing Treatment with a Focused Jet of Electrolytic Plasma. In: Evgrafov, A. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-39500-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39500-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39499-8

  • Online ISBN: 978-3-030-39500-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics