Skip to main content

Coarse/Fine Delay Element Design in 28 nm FD-SOI

  • Chapter
  • First Online:
The Fourth Terminal

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 1119 Accesses

Abstract

This chapter starts by highlighting the requirements and existing techniques in producing digital delay, summarizing the state of the art. Subsequently, a topology assessment is presented based on specified performance metrics. The proposed delay cell which was designed, fabricated, and characterized is then described. Specifically, the proposed design is based on a topology with low-supply-noise sensitivity and low jitter. Functionality is extended to support coarse/fine control for the output delay value, without the need for additional hardware. This is made possible by taking advantage of the body-biasing capabilities available in FD-SOI technology. The proposed delay element presents unique performance characteristics in terms of the achieved delay resolution and delay dynamic range. The chapter concludes with the demonstration of a delay line prototype, fabricated in ST 28 nm FD-SOI technology. After a general overview of delay techniques the proposed topology is described, by focusing on the major design aspects. Measurement results are then presented and a short discussion follows on the characterization findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hossain, F. Aquil, P.S. Chau, B. Tsang, P. Le, J. Wei, T. Stone, et al., A fast-lock, jitter filtering all-digital DLL based burst-mode memory interface. IEEE J. Solid-State Circuits 49(4), 1048–62 (2014). https://doi.org/10.1109/JSSC.2013.2297403

    Article  Google Scholar 

  2. L. Xu, S. Lindfors, K. Stadius, J. Ryynanen, A 2.4-GHz low-power all-digital phase-locked loop. IEEE J. Solid-State Circuits 45(8), 1513–21 (2010). https://doi.org/10.1109/JSSC.2010.2047453

  3. I.J. Chang, S.P. Park, K. Roy, Exploring asynchronous design techniques for process-tolerant and energy-efficient subthreshold operation. IEEE J. Solid-State Circuits 45(2), 401–10 (2010). https://doi.org/10.1109/JSSC.2009.2036764

    Article  Google Scholar 

  4. J.-P. Jansson, A. Mäntyniemi, J. Kostamovaara, A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits 41(6), 1286–96 (2006). https://doi.org/10.1109/JSSC.2006.874281

    Article  Google Scholar 

  5. J.-R. Su, T.-W. Liao, C.-C. Hung, Delay-line based fast-locking all-digital pulsewidth-control circuit with programmable duty cycle, in 2012 IEEE Asian Solid State Circuits Conference (A-SSCC) (IEEE, Piscataway, 2012), pp. 305–8. https://doi.org/10.1109/IPEC.2012.6522686

    Book  Google Scholar 

  6. C. Vezyrtzis, W. Jiang, S.M. Nowick, Y. Tsividis, A flexible, clockless digital filter, in 2013 Proceedings of the ESSCIRC (ESSCIRC) (2013), pp. 65–68. https://doi.org/10.1109/ESSCIRC.2013.6649073

  7. Y.W. Li, K.L. Shepard, Y.P. Tsividis, A continuous-time programmable digital FIR filter. IEEE J. Solid-State Circuits 41(11), 2512–20 (2006). https://doi.org/10.1109/JSSC.2006.883314

    Article  Google Scholar 

  8. J.M. Rabaey, A.P. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design Perspective, 2nd edn. Prentice Hall Electronics and VLSI Series (Prentice Hall, Upper Saddle River, 2003)

    Google Scholar 

  9. M. Bazes, A novel precision MOS synchronous delay line. IEEE J. Solid-State Circuits 20(6), 1265–71 (1985). https://doi.org/10.1109/JSSC.1985.1052467

    Article  Google Scholar 

  10. M. Maymandi-Nejad, M. Sachdev, A digitally programmable delay element: design and analysis. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11(5), 871–78 (2003). https://doi.org/10.1109/TVLSI.2003.810787

    Article  Google Scholar 

  11. L.H. Jung, N. Shany, A. Emperle, T. Lehmann, P. Byrnes-Preston, N.H. Lovell, G.J. Suaning, Design of safe two-wire interface-driven chip-scale neurostimulator for visual prosthesis. IEEE J. Solid-State Circuits 48(9), 2217–29 (2013). https://doi.org/10.1109/JSSC.2013.2264136

    Article  Google Scholar 

  12. M. Maymandi-Nejad, M. Sachdev, A monotonic digitally controlled delay element. IEEE J. Solid-State Circuits 40(11), 2212–19 (2005). https://doi.org/10.1109/JSSC.2005.857370

    Article  Google Scholar 

  13. J.-L. Yang, C.-W. Chao, S.-M. Lin, Tunable delay element for low power VLSI circuit design, in TENCON 2006 - 2006 IEEE Region 10 Conference (2006), pp. 1–4. https://doi.org/10.1109/TENCON.2006.344092

  14. A. Sekiyama, T. Seki, S. Nagai, A. Iwase, N. Suzuki, M. Hayasaka, A 1-V operating 256-kb full-CMOS SRAM. IEEE J. Solid-State Circuits 27(5), 776–82 (1992). https://doi.org/10.1109/4.133168

    Article  Google Scholar 

  15. N.R. Mahapatra, A. Tareen, S.V. Garimella, Comparison and analysis of delay elements, in The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002, vol. 2 (2002), pp. II-473–II-476. https://doi.org/10.1109/MWSCAS.2002.1186901

  16. J. Zhang, S.R. Cooper, A.R. LaPietra, M.W. Mattern, R.M. Guidash, E.G. Friedman, A low power thyristor-based CMOS programmable delay element, in Proceedings of the 2004 International Symposium on Circuits and Systems ISCAS ’04, vol. 1 (2004), pp. I–769–72. https://doi.org/10.1109/ISCAS.2004.1328308

  17. B. Schell, Y. Tsividis, A low power tunable delay element suitable for asynchronous delays of burst information. IEEE J. Solid-State Circuits 43(5), 1227–34 (2008). https://doi.org/10.1109/JSSC.2008.920332

    Article  Google Scholar 

  18. B. Saft, E. Schafer, A. Jager, A. Rolapp, E. Hennig, An improved low-power CMOS thyristor-based micro-to-millisecond delay element, in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC) (IEEE, Piscataway, 2014), pp. 123–126. https://doi.org/10.1109/ESSCIRC.2014.6942037

    Book  Google Scholar 

  19. I. Sourikopoulos, A. Frappé, A. Kaiser, L. Clavier, A decision feedback equalizer with channel-dependent power consumption for 60-GHz receivers, in International Symposium in Circuits and Systems (ISCAS), Melbourne (IEEE, Piscataway, 2014), pp. 1484–87. https://doi.org/10.1109/ISCAS.2014.6865427

    Google Scholar 

  20. M. Kurchuk, C. Weltin-Wu, D. Morche, Y. Tsividis, Event-driven GHz-range continuous-time digital signal processor with activity-dependent power dissipation. IEEE J. Solid-State Circuits 47(9), 2164–73 (2012). https://doi.org/10.1109/JSSC.2012.2203459

    Article  Google Scholar 

  21. I. Sourikopoulos, A. Frappé, A. Cathelin, L. Clavier, A. Kaiser, A digital delay line with coarse/fine tuning through gate/body biasing in 28nm FDSOI, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference (2016), pp. 145–48. https://doi.org/10.1109/ESSCIRC.2016.7598263

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Frappé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sourikopoulos, I., Cathelin, A., Kaiser, A., Frappé, A. (2020). Coarse/Fine Delay Element Design in 28 nm FD-SOI. In: Clerc, S., Di Gilio, T., Cathelin, A. (eds) The Fourth Terminal. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-39496-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39496-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39495-0

  • Online ISBN: 978-3-030-39496-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics