Skip to main content

Biogeography of Antarctic Seaweeds Facing Climate Changes

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

The seaweed biogeography and diversity in remote areas, such as Antarctica, should be reassessed considering the population shifts induced by global changes. This chapter addresses the hypothesis that ecological isolation can be disrupted and that biogeographical distribution of some species could be altered by thermohaline changes, which in turn would alter the dispersal patterns of macroalgae driven by severe meteorological and oceanographic events. Algal growth and distribution are limited by physical and biological processes, acting as sensitive bioindicators of changes or abrupt oscillations in the environmental regimes. In addition, Antarctica represents a natural laboratory highly susceptible to the climate changes, and the monitoring of their ecosystems may help to predict their potential effects beyond the Southern Ocean. Another fundamental issue is to understand the increase in species richness due to the cryptic and alien species, considering shifts in their biogeographic distribution. The large-scale patterns of some of these species reported for Antarctica may provide clues to reevaluate aspects of endemism, biological corridors, ecotone, and expansion of geographical distribution of algal assemblages facing climate changes, reinforcing the hypothesis that these isolated ecosystems will become gradually more connected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ATCM XXXV (2012) Final report. Deception Island management package: management plan for Antarctic specially managed area No 4 Deception Island, South Shetland Islands, Antarctica

    Google Scholar 

  • Billard E, Reyes J, Mansilla A, Faugeron S, Guillemin M-L (2015) Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol 38:2021. https://doi.org/10.1007/s00300-015-1762-4

    Article  Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Article  Google Scholar 

  • Boraso de Zaixso AL (2003) Algas marinas de la Patagonia: una guía ilustrada. Fundación de Historia Natural Félix de Azara, Argentina

    Google Scholar 

  • Boraso de Zaixso AL (ed) (2013) Elementos para el estudio de las macroalgas de Argentina, Con colaboración de J.M. Zaixso. 1a ed. – Comodoro Rivadavia, Universitaria de la Patagonia. ISBN 978-987-1937-14-1

    Google Scholar 

  • Clayton MN (1994) Evolution of the Antarctic marine benthic algal flora. Rev J Phycol 30:897–904

    Article  Google Scholar 

  • Clayton MN (2003) Falkland Islands seaweed survey, Shackleton Scholaship Fundation, Monash University, Victoria 3800, Australia

    Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149. https://doi.org/10.1007/s003000050116

    Article  Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552. https://doi.org/10.1515/botm.1992.35.6.541

    Article  Google Scholar 

  • Crame JA (1994) Evolutionary history of Antarctica. In: Hempel G (ed) Antarctic science: global concerns. Springer, Berlin, pp 188–214

    Chapter  Google Scholar 

  • Díaz Tapia P, Maggs C, Macaya EC, Verbruggen H (2018) Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. J Phycol 54:829–839. https://doi.org/10.1111/jpy.12778

  • Dubrasquet H, Reyes J, Sanchez RP, Valdivia N, Guillemin ML (2018) Molecular-assisted revision of red macroalgal diversity and distribution along the Western Antarctic Peninsula and South Shetland Islands. Cryptogamie Algol 39(4):409–429. https://doi.org/10.7872/crya/v39.iss4.2018.409

    Article  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ, Amsler CD (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203. https://doi.org/10.5670/oceanog.2013.62

    Article  Google Scholar 

  • Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR et al (2013) Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the southern Hemisphere. PLoS One 8(7):e69138. https://doi.org/10.1371/journal.pone.0069138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Morrison AK, McC Hogg A, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2019) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Change Lett 42:475–483. https://doi.org/10.1038/s41558-018-0209-7

    Article  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizzari FM, TMA A, Zani CL, PAS J, Romanha AJ, AGO C, LHVG G, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  Google Scholar 

  • Gallardo T, Pérez-Ruzafa IM, Flores-Moya A, Conde F (1999) New collections of benthic marine algae from Livingston and Deception Islands (South Shetland Islands) and Trinity Island (Bransfield Strait), Antarctica. Bot Mar 42:61–69. https://doi.org/10.1515/bot.1999.009

    Article  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya N, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME 7:1434–1451

    Article  CAS  Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 149:281–293

    Article  Google Scholar 

  • Griffiths HJ, Waller CL (2016) The first comprehensive description of the biodiversity and biogeography of Antarctic and Sub-Antarctic intertidal communities. J Biogeogr 43(6):1143–1155. https://doi.org/10.1111/jbi.12708

    Article  Google Scholar 

  • Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177

    Article  Google Scholar 

  • Guo KM, Taper M, Schoenberger B, Brandle J (2005) Spatial-temporal population dynamics across species range: from centre to margin. Oikos 108:47–57

    Article  Google Scholar 

  • Gutt J, Alvaro MC, Barco A, Böhmer A, Bracher A, David B et al (2016) Macroepibenthic communities at the tip of the Antarctic Peninsula, an ecological survey at different spatial scales. Polar Biol 39:829–849. https://doi.org/10.1007/s00300-015-1797-6

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534. https://doi.org/10.1515/bot.2009.081

    Article  Google Scholar 

  • Hughes KA, Ashton GV (2017) Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls. Aquatic Conserv Mar Freshw Ecosyst 27:158–164. https://doi.org/10.1002/aqc.2625

    Article  Google Scholar 

  • Huovinen P, Gómez I (2012) Cold-temperate seaweed communities of the Southern Hemisphere. In: Wiencke C, Bischof K (eds) Seaweed biology, novel insights into ecophysiology, ecology and utilization. Ecological studies 219. Springer, Berlin Heidelberg, pp 293–314. https://doi.org/10.1007/978-3-642-28451-9_14

    Chapter  Google Scholar 

  • John DM, Pugh PJA, Tittley I (1994) Observations on the benthic marine algal flora of South Georgia: a floristic and ecological analysis. Bull Nat Hist Museum 24:101–114

    Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3(5):1356–1373. https://doi.org/10.1002/ece3.541

    Article  PubMed  PubMed Central  Google Scholar 

  • Keith SA, Kerswell AP, Connolly SR (2011) Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Glob Ecol Biogeogr 23:517–529

    Article  Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    Article  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Article  Google Scholar 

  • Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). J Mar Syst 4:289–301

    Google Scholar 

  • Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep-Sea Res II 53:985–1008

    Article  Google Scholar 

  • Longhurst A (ed) (2007) Ecological geography of the sea, 2nd edn. Academic Press, London, p 390

    Google Scholar 

  • López BA, Macaya EC, Rivadeneira MM, Tala F, Tellier F, Thiel M (2018) Epibiont communities on stranded kelp rafts of Durvillaea antarctica (Fucales, Phaeophyceae). Do positive interactions facilitate range extensions? J Biogeogr 45:1833–1845. https://doi.org/10.1111/jbi.13375

    Article  Google Scholar 

  • Macaya EC, López B, Tala F, Tellier F, Thiel M (2016) Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 97–130. https://doi.org/10.1007/978-94-017-7534-2_4

    Chapter  Google Scholar 

  • McCarthy AH, Peck LS, Hughes KA, Aldridge DC (2019) Antarctica: the final frontier for marine biological invasions. Glob Chang Biol 25(7): 2221–2241. https://doi.org/10.1111/gcb.14600

  • Medeiros AS (2013) Macroalgae diversity of Admiralty Bay, King George Island, Antarctic Peninsula based on DNA barcoding and other molecular markers. Thesis. São Paulo University. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-24032014-090801/

  • Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638. https://doi.org/10.1515/bot.2009.080

    Article  Google Scholar 

  • Mystikou A, Peters AF, Asensi AO, Fletcher KI, Brickle P, van West P, Convey P, Küpper FC (2014) Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community com- position in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol 37:1607–1619. https://doi.org/10.1007/s00300-014-1547-1

    Article  Google Scholar 

  • NASEM (2017) National academies of sciences, engineering, and medicine. In: Antarctic sea ice variability in the Southern Ocean-climate system: proceedings of a workshop. The National Academies Press, Washington, DC. https://doi.org/10.17226/24696

  • Nelson WA (2012) Phylum rhodophyta: red algae. In: Gordon DP (ed) New Zealand inventory of biodiversity. Canterbury University Press, Christchurch

    Google Scholar 

  • Ocaranza-Barrera P, González-Wevar C, Guillemin ML, Rosenfeld S, Mansilla A (2018) Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. J App Phycol. 31:939–949. https://doi.org/10.1007/s10811-018-1656-2

  • Orsi AH, Whitworth T, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res 42:641–673. https://doi.org/10.1016/0967-0637(95)00021W

    Article  Google Scholar 

  • Papenfuss GF (1964) Catalogue and bibliography of Antarctic and Subantarctic benthic marine algae. Antar Res Ser 1:1–76

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pellizzari F, Santos-Silva MC, Medeiros A, Oliveira MC, Yokoya NS, Pupo D, Rosa L (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol. https://doi.org/10.1007/s00300-017-2092-5

  • Pibernat RA, Ellis-Evans C, Hinghofer-Szalkay HG (eds) (2007) Life in extreme environments. Springer, The Netherlands. https://doi.org/10.1007/978-1-4020-6285-8

  • Pierrat B, Sausede T, Brayard A, David B (2013) Comparative biogeography of echinoids, bivalves and gastropods from the Southern Ocean. J Biogeogr 40:1374–1385

    Article  Google Scholar 

  • Pritchard HD, Ligtenberg SR, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. https://doi.org/10.1038/nature10968

    Article  CAS  PubMed  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8(3):e58223. https://doi.org/10.1371/journal.pone.0058223

  • Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile

    Google Scholar 

  • Ricker RW (1987) Taxonomy and biogeography of Macquarie Island seaweeds. British Museum (Natural History), London

    Google Scholar 

  • Sanches PF, Pellizzari FM, Horta PH (2016) Multivariate analyses of Antarctic and sub- Antarctic seaweed distribution patterns: an evaluation of the role of the Antarctic Circumpolar Current. J Sea Res 110:29–38. https://doi.org/10.1016/j.seares.2016.02.002

    Article  Google Scholar 

  • Sangil C, Sansón M, Afonso-Carillo J, Herrera R, Rodríguez A, Martín-García L, Díaz-Villa T (2012) Changes in sub- tidal assemblages in a scenario of warming: proliferations of ephemeral benthic algae in the Canary Islands (eastern Atlantic Ocean). Mar Environ Res 77:120–128

    Google Scholar 

  • Sjøtun K, Husa V, Asplin L, Sandvik AD (2015) Climatic and environmental factors influencing occurrence and distribution of macroalgae — a fjord gradient revisited. Mar Ecol Prog Ser 532:73–88. https://doi.org/10.3354/meps11341

    Article  Google Scholar 

  • Smith KL, Baldwin RJ, Kaufmann RS, Sturz A (2003) Ecosystem studies at Deception Island, Antarctica: an overview. Deep-Sea Res II 50:1595–1609. https://doi.org/10.1016/S0967-0645(03)00081-X

    Article  Google Scholar 

  • Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113. https://doi.org/10.1029/2007jc004269

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57(2):272–289. https://doi.org/10.1111/j.1574-6941.2006.00110.x

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD (2010) Climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  • Wells E, Brewin P, Brickle P (2011) Intertidal and subtidal benthic seaweed diversity of South Georgia. Norfolk, UK

    Google Scholar 

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694

    Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011a) Seaweed communities in retreat from ocean warming. Curr Biol 21(21):1828–1832. https://doi.org/10.1016/j.cub.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011b) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, Bettignies T, De Cure K, Depczynski M, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    Article  CAS  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp. 265–291

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Wagele JW (ed) Synopses of the Antarctic benthos. Lichtensein, Germany

    Google Scholar 

  • Wiencke C, Tom Dieck IT (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 24:157–170

    Article  Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Luder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6: 95–126. https://doi.org/10.1007/s11157-006-9106-z

  • Wiencke C, Amsler CD, Clayton MN (2014) Chapter 5.1. Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Cd UA (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73

    Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro–and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507. https://doi.org/10.1515/bot.2009.072

    Article  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490. https://doi.org/10.1515/bot.2009

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank PROANTAR (Brazilian Antarctic Program 557030/2009-9, 407588/2013-2 and 442258/2018-2), INCT Criosfera 2, Brazilian Navy (Polar Ship Almirante Maximiano–H41), Brazilian Air Force, MMA (Ministry of Environment), MCTIC (Ministry of Science, Technology and Innovation), CNPq (National Council of Research and Development), Fundação Araucária–Government of Paraná, CAPES, FAPEMIG, and FNDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciane Pellizzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pellizzari, F., Rosa, L.H., Yokoya, N.S. (2020). Biogeography of Antarctic Seaweeds Facing Climate Changes. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_5

Download citation

Publish with us

Policies and ethics