Skip to main content

Salient Object Detection via Graph-Based Flexible Manifold Ranking

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1155 Accesses

Abstract

The task of saliency detection is to segment salient objects in natural scenes. Simple and effective saliency detection model has always been a challenging problem. We explore a graph-based flexible manifold ranking approach for single image saliency detection. An input image is represented as an undirected graph. Feature vectors are extracted covering regional color and texture. An optimal function is used to infer the labels based on linear classification projection and manifold ranking in our work. The optimal function further ensures the reliability of the prediction results. Extensive experiments on four benchmark datasets show that our method is better than the other eight classic methods. So the proposed method is a competitive method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.-H.: Saliency detection via absorbing markov chain. In: IEEE International Conference on Computer Vision (ICCV), pp. 1665–1672 (2013)

    Google Scholar 

  2. Li, C., Wang, G., Ma, Y., Zheng, A., Luo, B., Tang, J.: A unified RGB-T saliency detection benchmark: dataset, baselines, analysis and a novel approach. arXiv:1701.02829 (2017)

  3. Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2710–2717 (2015)

    Google Scholar 

  4. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3166–3173 (2013)

    Google Scholar 

  5. Nie, F., Xu, D., Tsang, I.W.-H., Zhang, C.: Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans. Image Process. 19(7), 1921–1932 (2010)

    Article  MathSciNet  Google Scholar 

  6. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 733–740 (2012)

    Google Scholar 

  7. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5455–5463 (2015)

    Google Scholar 

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  9. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems (NIPS), pp. 545–552 (2006)

    Google Scholar 

  10. Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  11. Tong, N., Lu, H., Ruan, X., Yang, M.: Salient object detection via bootstrap learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1884–1892 (2015)

    Google Scholar 

  12. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1155–1162 (2013)

    Google Scholar 

  13. Wang, Q., Zheng, W., Piramuthu, R.: GraB: visual saliency via novel graph model and background priors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 535–543 (2016)

    Google Scholar 

  14. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. EPFL Technical report no. 149300 (2010)

    Google Scholar 

  15. Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1597–1604 (2009)

    Google Scholar 

  16. Quan, R., Han, J., Zhang, D., Nie, F.: Object co-segmentation via graph optimized-flexible manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 687–695 (2016)

    Google Scholar 

  17. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)

    Article  Google Scholar 

  18. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2010)

    Article  Google Scholar 

  19. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: Computer Vision and Pattern Recognition Workshops (CVPR), pp. 49–56 (2010)

    Google Scholar 

  20. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2814–2821 (2014)

    Google Scholar 

  21. Lin, X., Wang, Z., Ma, L., Wu, X.: Saliency detection via multi-scale global cues. IEEE Trans. Multimed. (2018). https://doi.org/10.1109/2884474

  22. Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 280–287 (2014)

    Google Scholar 

  23. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3

    Chapter  Google Scholar 

  24. Jiang, B., He, Z., Ding, C., et al.: Saliency detection via a multi-layer graph based diffusion model. Neurocomputing (2018). https://www.sciencedirect.com/science/article/abs/pii/S0925231218308026

  25. Xiao, Y., Wang, L., Jiang, B., et al.: A global and local consistent ranking model for image saliency computation. J. Vis. Commun. Image Represent. 46, 199–207 (2017)

    Article  Google Scholar 

  26. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2014)

    Article  Google Scholar 

  27. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circ. Syst. Video Technol. 25(8), 1309–1321 (2014)

    Google Scholar 

  28. Yan, Y., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  29. Wang, Z., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Natural Science Foundation of Anhui Province (1908085QF264, 1808085QF209) and the Natural Science Foundation of Anhui Higher Education Institution of China (KJ2019A0536, KJ2019A0532, KJ2019A0529, KJ2019A0026 and KJ2019A0541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Jiang, B., Xiao, Y., Tang, J. (2020). Salient Object Detection via Graph-Based Flexible Manifold Ranking. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics