Skip to main content

Evaluation of Deep Learning and Conventional Approaches for Image Steganalysis

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1316 Accesses

Abstract

Steganography is the technique that’s used to embed secret messages into digital media without changing their appearances. As a countermeasure to steganography, steganalysis detects the presence of hidden data in a digital content. For the last decade, the majority of image steganalysis approaches can be formed by two stages. The first stage is to extract effective features from the image content and the second is to train a classifier in machine learning by using the features from stage one. Ultimately the image steganalysis becomes a binary classification problem. Since Deep Learning related architecture unify these two stages and save researchers lots of time designing hand-crafted features, the design of a CNN-based steganalyzer has therefore received increasing attention over the past few years. In this paper, we will examine the development in image steganalysis, both in spatial domain and in JPEG domain, and discuss the future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedighi, V., et al.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2015)

    Article  Google Scholar 

  2. Holub, V., et al.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1 (2014)

    Article  Google Scholar 

  3. Li, B., et al.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP) (2014)

    Google Scholar 

  4. Holub, V., et al.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS) (2012)

    Google Scholar 

  5. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, Philip W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  6. Guo, L., et al.: Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)

    Article  Google Scholar 

  7. Schlegel, D.: Deep machine learning on GPU. University of Heidelber-Ziti, p. 12 (2015)

    Google Scholar 

  8. Pevny, T., et al.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  9. Fridrich, J., et al.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  10. Kodovsky, J., Holub, V., et al.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2011)

    Article  Google Scholar 

  11. Holub, V., et al.: Random projections of residuals as an alternative to co-occurrences in steganalysis. In: Proceedings SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XV, San Francisco, CA, vol. 8665 (2013)

    Google Scholar 

  12. Holub, V., et al.: Random projections of residuals for digital image steganalysis. IEEE Trans. Inf. Forensics Secur. 8(12), 1996–2006 (2013)

    Article  Google Scholar 

  13. Denemark, T., et al.: Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS) (2014)

    Google Scholar 

  14. Li, B., et al.: New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans. Inf. Forensics Secur. 13(5), 1242–1257 (2017)

    Article  Google Scholar 

  15. Chen, C., et al.: JPEG image steganalysis utilizing both intrablock and interblock correlations. In: 2008 IEEE International Symposium on Circuits and Systems. IEEE (2008)

    Google Scholar 

  16. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: breaking the F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3_20

    Chapter  Google Scholar 

  17. Kodovský, J., et al.: Calibration revisited. In: Proceedings of the 11th ACM Workshop on Multimedia and Security. ACM (2009)

    Google Scholar 

  18. Liu, Q.: Steganalysis of DCT-embedding based adaptive steganography and YASS. In: Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security. ACM (2011)

    Google Scholar 

  19. Kodovský, J., et al.: Steganalysis in high dimensions: fusing classifiers built on random subspaces. In: Media Watermarking, Security, and Forensics III, vol. 7880. International Society for Optics and Photonics (2011)

    Google Scholar 

  20. Kodovský, J., et al.: Steganalysis of JPEG images using rich models. In: Media Watermarking, Security, and Forensics 2012, vol. 8303. International Society for Optics and Photonics (2012)

    Google Scholar 

  21. Holub, V., et al.: Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2014)

    Article  Google Scholar 

  22. Holub, V., et al.: Phase-aware projection model for steganalysis of JPEG images. In: Media Watermarking, Security, and Forensics 2015, vol. 9409. International Society for Optics and Photonics (2015)

    Google Scholar 

  23. Song, X., et al.: Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security. ACM (2015)

    Google Scholar 

  24. Denemark, T., et al.: Steganalysis features for content-adaptive JPEG steganography. IEEE Trans. Inf. Forensics Secur. 11(8), 1736–1746 (2016)

    Article  Google Scholar 

  25. Qian, Y., et al.: Deep learning for steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics 2015, vol. 9409. International Society for Optics and Photonics (2015)

    Google Scholar 

  26. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  27. Pibre, L., et al.: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch. Electron. Imaging 4(8), 1–11 (2016)

    Article  Google Scholar 

  28. Xu, G., et al.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  29. Xu, G., et al.: Ensemble of CNNs for steganalysis: an empirical study. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. ACM (2016)

    Google Scholar 

  30. Qian, Y., et al.: Learning and transferring representations for image steganalysis using convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP) (2016)

    Google Scholar 

  31. Ye, J., et al.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  32. Yedroudj, M., et al.: Yedroudj-Net: an efficient CNN for spatial steganalysis. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)

    Google Scholar 

  33. Li, B., et al.: ReST-Net: diverse activation modules and parallel subnets-based CNN for spatial image steganalysis. IEEE Sig. Process. Lett. 25(5), 650–654 (2018)

    Article  Google Scholar 

  34. Zhang, R., et al.: Efficient feature learning and multi-size image steganalysis based on CNN. arXiv preprint arXiv:1807.11428 (2018)

  35. Wu, S., et al.: Deep residual learning for image steganalysis. Multimed. Tools Appl. 77(9), 10437–10453 (2018)

    Article  Google Scholar 

  36. Boroumand, M., et al.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

  37. Xu, G.: Deep convolutional neural network to detect J-UNIWARD. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. ACM (2017)

    Google Scholar 

  38. Chen, M., et al.: JPEG-phase-aware convolutional neural network for steganalysis of JPEG images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. ACM (2017)

    Google Scholar 

  39. Yang, J., et al.: JPEG steganalysis based on densenet. arXiv preprint arXiv:1711.09335 (2017)

  40. Zeng, J., et al.: Large-scale JPEG image steganalysis using hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 13(5), 1200–1214 (2017)

    Article  Google Scholar 

  41. Xia, C., et al.: Improved PHARM for JPEG steganalysis: making PHARM more efficient and effective. IEEE Access 7, 50339–50346 (2019)

    Article  Google Scholar 

  42. Feng, G., et al.: Diversity-based cascade filters for JPEG steganalysis. IEEE Trans. Circuits Syst. Video Technol. (2019)

    Google Scholar 

  43. Hu, D., et al.: Digital image steganalysis based on visual attention and deep reinforcement learning. IEEE Access 7, 25924–25935 (2019)

    Article  Google Scholar 

  44. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  45. Bas, P., et al.: BOWS-2 (2007). http://bows2.ec-lille.fr

  46. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was partly supported by National Natural Science Foundation of China (61772144, 61672008), Innovation Team Project (Natural Science) of the Education Department of Guangdong Province (2017KCXTD021), Foundation for Youth Innovation Talents in Higher Education of Guangdong Province (2018KQNCX139), Innovation Research Project (Natural Science) of Education Department of Guangdong Province (2016KTSCX077), Project for Distinctive Innovation of Ordinary Universities of Guangdong Province (2018KTSCX120), and Foreign Science and Technology Cooperation Plan Project of Guangzhou Science Technology and Innovation Commission (201807010059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, G., Ren, J., Zhao, H., Zhao, S., Marshall, S. (2020). Evaluation of Deep Learning and Conventional Approaches for Image Steganalysis. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics