Skip to main content

Pathophysiology of Severe Traumatic Brain Injury

  • Chapter
  • First Online:
Management of Severe Traumatic Brain Injury
  • 1731 Accesses

Abstract

Traumatic brain injury (TBI) is named the most complex disease in the most complex organ in the body. TBI is extremely heterogeneous and so is the underlying pathophysiology. At the time of impact, the primary brain injury results in neuronal, vascular, and glial damage. This primary injury is exacerbated by complex processes leading to progressive brain injury including brain edema and increased intracranial pressure, worsening white matter injury, reduced cerebral blood flow, and a reduced capacity for ATP generation. Furthermore, complex local and systemic inflammatory responses ensue and these may contribute to worsening brain injury. Understanding of the secondary and late injury processes is key in developing novel treatment targets and for correct clinical assessment of the patient. In this chapter, the crucial pathophysiological events occurring in TBI are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Hamdeh S, Marklund N, Lannsjo M, Howells T, Raininko R, Wikstrom J, et al. Extended anatomical grading in diffuse axonal injury using MRI: hemorrhagic lesions in the Substantia Nigra and Mesencephalic Tegmentum indicate poor long-term outcome. J Neurotrauma. 2017;34(2):341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abu Hamdeh S, Waara ER, Moller C, Soderberg L, Basun H, Alafuzoff I, et al. Rapid amyloid-beta oligomer and protofibril accumulation in traumatic brain injury. Brain Pathol. 2018;28(4):451–62.

    Article  CAS  PubMed  Google Scholar 

  • Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12(6):557–63.

    Article  CAS  PubMed  Google Scholar 

  • Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  • Adams JH, Jennett B, Murray LS, Teasdale GM, Gennarelli TA, Graham DI. Neuropathological findings in disabled survivors of a head injury. J Neurotrauma. 2011;28(5):701–9.

    Article  PubMed  Google Scholar 

  • Andresen M, Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg. 2014;121(4):797–801.

    Article  PubMed  Google Scholar 

  • Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14(10):2381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275(Pt 3):328–33.

    Article  CAS  PubMed  Google Scholar 

  • Axelson HW, Winkler T, Flygt J, Djupsjo A, Hanell A, Marklund N. Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci. 2013;31(1):73–85.

    PubMed  Google Scholar 

  • Bose P, Hou J, Thompson FJ. Traumatic brain injury (TBI)-induced spasticity: neurobiology, treatment, and rehabilitation. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, Frontiers in neuroengineering. Boca Raton: CRC Press; 2015.

    Google Scholar 

  • Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165(2):357–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JH, Leech R, Sharp DJ, Alzheimer’s Disease Neuroimaging Initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol. 2015;77(4):571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Combs HL, Jones TA, Kozlowski DA, Adkins DL. Combinatorial motor training results in functional reorganization of remaining motor cortex after controlled cortical impact in rats. J Neurotrauma. 2016;33(8):741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016;13:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding K, Marquez de la Plata C, Wang JY, Mumphrey M, Moore C, Harper C, et al. Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J Neurotrauma. 2008;25(12):1433–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–9.

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  • Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain. 2015;138(Pt 6):1696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flygt J, Gumucio A, Ingelsson M, Skoglund K, Holm J, Alafuzoff I, et al. Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol. 2016;75(6):503–15.

    Article  CAS  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy CG, Zheng B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol. 2014;27:31–8.

    Article  CAS  PubMed  Google Scholar 

  • Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LB. Prescribing of potentially harmful drugs to patients admitted to hospital after head injury. J Neurol Neurosurg Psychiatry. 1995;58(6):753–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, et al. Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry. 1989;52(3):346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil. 2005;15(3–4):198–213.

    Article  CAS  PubMed  Google Scholar 

  • Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57.

    CAS  PubMed  Google Scholar 

  • Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016;22(2):120–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22(2):142–9.

    Article  CAS  PubMed  Google Scholar 

  • Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain J Neurol. 2013a;136(Pt 1):28–42.

    Article  Google Scholar 

  • Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013b;246:35–43.

    Article  CAS  PubMed  Google Scholar 

  • Kampfl A, Franz G, Aichner F, Pfausler B, Haring HP, Felber S, et al. The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg. 1998;88(5):809–16.

    Article  CAS  PubMed  Google Scholar 

  • Kawai N, Nakamura T, Tamiya T, Nagao S. Metabolic disturbance without brain ischemia in traumatic brain injury: a positron emission tomography study. Acta Neurochir Suppl. 2008;102:241–5.

    Article  PubMed  Google Scholar 

  • Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134(Pt 2):449–63.

    Article  PubMed  Google Scholar 

  • Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care. 2016;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, et al. Aiming for the target: mitochondrial drug delivery in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):209–19.

    Article  CAS  PubMed  Google Scholar 

  • Ljungqvist J, Nilsson D, Ljungberg M, Esbjornsson E, Eriksson-Ritzen C, Skoglund T. Longitudinal changes in diffusion tensor imaging parameters of the corpus callosum between 6 and 12 months after diffuse axonal injury. Brain Inj. 2017;31(3):344–50.

    Article  PubMed  Google Scholar 

  • Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, et al. Tau elevations in the brain extracellular space correlate with reduced amyloid-beta levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2012;135(Pt 4):1268–80.

    Article  PubMed  Google Scholar 

  • Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macri M, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mannino C, Glenn TC, Hovda DA, Vespa PM, McArthur DL, Van Horn JD, et al. Acute glucose and lactate metabolism are associated with cognitive recovery following traumatic brain injury. J Neurosci Res. 2018;96(4):696–701.

    Article  CAS  PubMed  Google Scholar 

  • Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol. 2011;164(4):1207–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.

    Article  PubMed  Google Scholar 

  • McGuire JL, DePasquale EAK, Watanabe M, Anwar F, Ngwenya LB, Atluri G, et al. Chronic dysregulation of cortical and subcortical metabolism after experimental traumatic brain injury. Mol Neurobiol. 2019;56(4):2908–21.

    Article  CAS  PubMed  Google Scholar 

  • McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016;7:556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moe HK, Moen KG, Skandsen T, Kvistad KA, Laureys S, Haberg A, et al. The influence of traumatic axonal injury in thalamus and brainstem on level of consciousness at scene or admission: a clinical magnetic resonance imaging study. J Neurotrauma. 2018;35:975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37(1):3–23.

    Article  CAS  PubMed  Google Scholar 

  • Nassiri F, Badhiwala JH, Witiw CD, Mansouri A, Davidson B, Almenawer SA, et al. The clinical significance of isolated traumatic subarachnoid hemorrhage in mild traumatic brain injury: a meta-analysis. J Trauma Acute Care Surg. 2017;83(4):725–31.

    Article  PubMed  Google Scholar 

  • Newcombe VF, Williams GB, Outtrim JG, Chatfield D, Gulia Abate M, Geeraerts T, et al. Microstructural basis of contusion expansion in traumatic brain injury: insights from diffusion tensor imaging. J Cereb Blood Flow Metab. 2013;33(6):855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013;12(7):716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruitt DT, Danaphongse TT, Schmid AN, Morrison RA, Kilgard MP, Rennaker RL 2nd, et al. Traumatic brain injury occludes training-dependent cortical reorganization in the contralesional hemisphere. J Neurotrauma. 2017;34(17):2495–503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritzel RM, Doran SJ, Barrett JP, Henry RJ, Ma EL, Faden AI, et al. Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma. 2018;35(13):1419–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114.

    PubMed  PubMed Central  Google Scholar 

  • Ryan CG, Thompson RE, Temkin NR, Crane PK, Ellenbogen RG, Elmore JG. Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a level I trauma center. J Trauma Acute Care Surg. 2012;73(5):1348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(9):572.

    Article  PubMed  Google Scholar 

  • Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol. 2014;252:47–56.

    Article  CAS  PubMed  Google Scholar 

  • Skandsen T, Kvistad KA, Solheim O, Strand IH, Folvik M, Vik A. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg. 2010;113(3):556–63.

    Article  PubMed  Google Scholar 

  • Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013a;9(4):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DH, Hicks R, Povlishock JT. Therapy development for diffuse axonal injury. J Neurotrauma. 2013b;30(5):307–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS. 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma. 2010;27(7):1343–53.

    Article  PubMed  Google Scholar 

  • Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    Article  CAS  PubMed  Google Scholar 

  • Tennant KA. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp Neurol. 2014;254:195–9.

    Article  PubMed  Google Scholar 

  • Thelin EP, Nelson DW, Vehvilainen J, Nystrom H, Kivisaari R, Siironen J, et al. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: an observational, multicenter study. PLoS Med. 2017;14(8):e1002368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol. 2017;8:599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson L, Stewart W, Dams-O’Connor K, Diaz-Arrastia R, Horton L, Menon DK, et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017;16(10):813–25.

    Article  PubMed  Google Scholar 

  • Wolpaw JR. Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol. 2007;189(2):155–69.

    Article  CAS  Google Scholar 

  • Yue GH, Clark BC, Li S, Vaillancourt DE. Understanding neuromuscular system plasticity to improve motor function in health, disease, and injury. Neural Plast. 2017;2017:2425180.

    Article  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Shetty AK, Mishra V, Kodali M, Hattiangady B. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci. 2014;8:232. https://doi.org/10.3389/fncel.2014.00232. eCollection 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Marklund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marklund, N., Tenovuo, O. (2020). Pathophysiology of Severe Traumatic Brain Injury. In: Sundstrøm, T., Grände, PO., Luoto, T., Rosenlund, C., Undén, J., Wester, K. (eds) Management of Severe Traumatic Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-39383-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39383-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39382-3

  • Online ISBN: 978-3-030-39383-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics