Skip to main content

Automated Quantification of Retinal Microvasculature from OCT Angiography Using Dictionary-Based Vessel Segmentation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

Investigations in how the retinal microvasculature correlates with ophthalmological conditions necessitate a method for measuring the microvasculature. Optical coherence tomography angiography (OCTA) depicts the superficial and the deep layer of the retina, but quantification of the microvascular network is still needed. Here, we propose an automatic quantitative analysis of the retinal microvasculature. We use a dictionary-based segmentation to detect larger vessels and capillaries in the retina and we extract features such as densities and vessel radius. The method is validated on repeated OCTA scans from healthy subjects, and we observe high intraclass correlation coefficients and high agreement in a Bland-Altman analysis. The quantification method is also applied to pre- and postoperative scans of cataract patients. Here, we observe a higher variation between the measurements, which can be explained by the greater variation in scan quality. Statistical tests of both the healthy subjects and cataract patients show that our method is able to differentiate subjects based on the extracted microvascular features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Sheikh, M., et al.: Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br. J. Ophthalmol. 101(4), 449–452 (2017)

    Article  Google Scholar 

  2. Campbell, J., et al.: Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci. Rep. 7, 42201 (2017)

    Article  Google Scholar 

  3. Chu, Z., et al.: Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J. Biomed. Opt. 21(6), 066008 (2016)

    Article  Google Scholar 

  4. Dahl, A., Larsen, R.: Learning dictionaries of discriminative image patches. In: Proceedings of BMVC, pp. 77.1–77.11. BMVA Press (2011)

    Google Scholar 

  5. Dahl, A.B., Dahl, V.A.: Dictionary snakes. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 142–147. IEEE (2014)

    Google Scholar 

  6. Dahl, A.B., Dahl, V.A.: Dictionary based image segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19665-7_3

    Chapter  Google Scholar 

  7. Lei, J., et al.: Repeatability and Reproducibility of Superficial Macu-lar Retinal Vessel Density Measurements Using Optical Coherence Tomography Angiography En FaceImages. JAMA Ophthalmol. 135(10), 1092–1098 (2017). https://doi.org/10.1001/jamaophthalmol.2017.3431

    Article  Google Scholar 

  8. Eladawi, N., et al.: Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Med. Phys. 45(10), 4582–4599 (2018)

    Article  Google Scholar 

  9. Gadde, S.G., et al.: Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest. Ophthalmol. Vis. Sci. 57(1), 246–252 (2016)

    Article  Google Scholar 

  10. Early Treatment Diabetic Retinopathy Study Research Group: Classification of diabetic retinopathy from fluorescein angiograms: ETDRS report number 11. Ophthalmology 98(5), 807–822 (1991)

    Article  Google Scholar 

  11. Hwang, T.S., et al.: Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 134(4), 367–373 (2016)

    Article  MathSciNet  Google Scholar 

  12. Iafe, N.A., et al.: Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(13), 5780–5787 (2016)

    Article  Google Scholar 

  13. Kashani, A.H., et al.: Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60, 66–100 (2017)

    Article  Google Scholar 

  14. Kim, A.Y., et al.: Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT62–OCT370 (2016)

    Article  Google Scholar 

  15. Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr. Med. 15(2), 155–163 (2016)

    Article  Google Scholar 

  16. Mastropasqua, R., et al.: Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int. J. Ophthalmol. 10(10), 1545 (2017)

    Google Scholar 

  17. McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1(1), 30 (1996)

    Article  Google Scholar 

  18. Rabiolo, A., et al.: Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS ONE 13(10), e0205773 (2018)

    Article  Google Scholar 

  19. Salarian, A.: Intraclass Correlation Coefficient (ICC) Matlab Central File Exchange (2016). https://se.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc. Accessed 5 Feb 2019

  20. Shoji, T., et al.: Reproducibility of macular vessel density calculations via imaging with two different swept-source optical coherence tomography angiography systems. Transl. Vis. Sci. Technol. 7(6), 31 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Emeritus Knut Conradsen, DTU Compute, and Assistant Professor Anders Nymark, DTU Compute, for valuable assistance and guidance in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid M. E. Engberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engberg, A.M.E., Erichsen, J.H., Sander, B., Kessel, L., Dahl, A.B., Dahl, V.A. (2020). Automated Quantification of Retinal Microvasculature from OCT Angiography Using Dictionary-Based Vessel Segmentation. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics