Skip to main content

Coding of Static Information in Terrestrial Mammal Vocal Signals

  • Chapter
  • First Online:
Coding Strategies in Vertebrate Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 7))

Abstract

Understanding how information is encoded in vocal signals, and what function it serves during social and sexual interactions, is a key objective of animal communication research. In this chapter, we focus on the origins and functions of vocal cues to stable, long-term attributes of callers (such as identity, sex, and body size) in terrestrial mammals, including humans. We show that relatively static vocal cues largely originate from biomechanical constraints linked to the animal’s anatomy or physiology that affect the possible ranges of key frequency components (fundamental frequency and formant spacing) in their calls. We illustrate how the source–filter theory of voice production provides a useful framework for determining the biomechanical origins of the information content of mammalian vocal signals, and how dedicated tools enable researchers to test the functions and social outcomes of relevant acoustic variation in controlled playback experiments. The body of research reviewed in this chapter illustrates how combining observational (anatomy, acoustics), experimental (playback studies), and comparative approaches enables researchers to draw general conclusions about the selection pressures driving the evolution of vocal production and perception in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abitbol J, Abitbol P, Abitbol B (1999) Sex hormones and the female voice. J Voice 13:424–446

    Article  CAS  PubMed  Google Scholar 

  • Apicella C, Feinberg D (2009) Voice pitch alters mate-choice-relevant perception in hunter–gatherers. Proc R Soc B 276(1659):1077–1082

    Article  PubMed  Google Scholar 

  • Bachorowski J, Owren M (1999) … talker sex and individual talker identity are present in a short vowel segment produced in running … . J Acoust Soc Am 106:1054

    Article  CAS  PubMed  Google Scholar 

  • Bachorowski JA, Smoski MJ, Owren MJ (2001) The acoustic features of human laughter. J Acoust Soc Am 110(3):1581e1597

    Article  Google Scholar 

  • Barelli C, Mundry R, Heistermann M, Hammerschmidt K (2013) Cues to androgens and quality in male gibbon songs. PLoS One 8:e82748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beckford NS, Schain D, Roor SR, Schanbacher B (1985) Androgen stimulation and laryngeal development. Ann Otol Rhinol Laryngol 94:634–640

    Article  CAS  PubMed  Google Scholar 

  • Benitez M, le Roux A, Fischer J, Beehner J, Bergman T (2016) Acoustic and temporal variation in gelada (Theropithecus gelada) loud calls advertise male quality. Int J Primatol 37:1–18

    Article  Google Scholar 

  • Boidron L, Boudenia K, Avena C, Boucheix J-M, Aucouturier J-J (2016) Emergency medical triage decisions are swayed by computer-manipulated cues of physical dominance in caller’s voice. Sci Rep 6:30219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkowska B, Pawlowski B (2011) Female voice frequency in the context of dominance and attractiveness perception. Anim Behav 82:55–59

    Article  Google Scholar 

  • Bowling DL, Garcia M, Dunn JC, Ruprecht R, Stewart A, Frommolt KH, Fitch WT (2017) Body size and vocalization in primates and carnivores. Sci Rep 7:41070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury J (1977) Lek mating behavior in the hammer–headed bat. Z Tierpsychol 45:225–255

    Article  Google Scholar 

  • Bradbury J, Vehrencamp SL (2011) Principles of animal communication. Sinear Associates Inc, Sunderland, MA

    Google Scholar 

  • Briefer E, McElligott AG (2011) Mutual mother offspring vocal recognition in an ungulate hider species (Capra hircus). Anim Cogn 14:585–598

    Article  PubMed  Google Scholar 

  • Bryant G, Haselton M (2009) Vocal cues of ovulation in human females. Biol Lett 5:12–15

    Article  PubMed  Google Scholar 

  • Cartei V, Bond R, Reby D (2014) What makes a voice masculine: physiological and acoustical correlates of women’s ratings of men’s vocal masculinity. Horm Behav 66:569–576

    Article  PubMed  Google Scholar 

  • Carter GG, Skowronski MD, Faure PA, Fenton B (2008) Antiphonal calling allows individual discrimination in white-winged vampire bats. Anim Behav 76:1343–1355

    Article  Google Scholar 

  • Charlton B (2014) Vocal distinctiveness in the harsh coughs of southern hairy-nosed wombats (Lasiorhinus latifrons). Acta Acust Acust 100:719–723

    Article  Google Scholar 

  • Charlton B (2015) The acoustic structure and information content of female koala vocal signals. PLoS One 10:e0138670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charlton B, Reby D (2016) The evolution of acoustic size exaggeration in terrestrial mammals. Nat Commun 7:12739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Reby D, McComb K (2007a) Female perception of size-related formant shifts in red deer, Cervus elaphus. Anim Behav 74:707–714

    Article  Google Scholar 

  • Charlton B, Reby D, McComb K (2007b) Female red deer prefer the roars of larger males. Biol Lett 3:382–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Reby D, McComb K (2008) Effect of combined source (F0) and filter (formant) variation on red deer hind responses to male roars. J Acoust Soc Am 123:2936–2943

    Article  PubMed  Google Scholar 

  • Charlton B, Zhang Z, Snyder R (2009a) Vocal cues to identity and relatedness in giant pandas (Ailuropoda melanoleuca). J Acoust Soc Am 126:2721–2732

    Article  PubMed  Google Scholar 

  • Charlton B, Zhihe Z, Snyder R (2009b) The information content of giant panda, Ailuropoda melanoleuca, bleats: acoustic cues to sex, age and size. Anim Behav 78:893–898

    Article  Google Scholar 

  • Charlton B, Zhang Z, Snyder R (2010) Giant pandas perceive and attend to formant frequency variation in male bleats. Anim Behav 79:1221–1227

    Article  Google Scholar 

  • Charlton B, Ellis W, McKinnon A, Brumm J, Nilsson K, Fitch W (2011a) Perception of male caller identity in koalas (Phascolarctos cinereus): acoustic analysis and playback experiments. PLoS One 6:e20329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Ellis W, McKinnon A, Cowin G, Brumm J, Nilsson K, Fitch W (2011b) Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait. J Exp Biol 214:3414–3422

    Article  PubMed  Google Scholar 

  • Charlton B, Keating JL, Kersey D, Rengui L, Huang Y, Swaisgood RR (2011c) Vocal cues to male androgen levels in giant pandas. Biol Lett 7:71–74

    Article  PubMed  Google Scholar 

  • Charlton B, Ellis W, Brumm J, Nilsson K, Fitch W (2012a) Female koalas prefer bellows in which lower formants indicate larger males. Anim Behav 84:1565–1571

    Article  Google Scholar 

  • Charlton B, Swaisgood R, Zhihe Z, Snyder R (2012b) Giant pandas attend to androgen-related variation in male bleats. Behav Ecol Sociobiol 66:969–974

    Article  Google Scholar 

  • Charlton B, Ellis WAH, Larkin R, Fitch WT (2012c) Perception of size-related formant information in male koalas (Phascolarctos cinereus). Anim Cogn 15:999–1006

    Article  PubMed  Google Scholar 

  • Charlton B, Frey R, McKinnon A, Fritsch G, Fitch W, Reby D (2013a) Koalas use a novel vocal organ to produce unusually low-pitched mating calls. Curr Biol 23:R1035–R1036

    Article  CAS  PubMed  Google Scholar 

  • Charlton B, Taylor A, Reby D (2013b) Are men better than women at acoustic size judgements? Biol Lett 9:20130270

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Whisson D, Reby D (2013c) Free-ranging male koalas use size-related variation in formant frequencies to assess rival males. PLoS One 8:e70279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Keating JL, Rengui L, Huang Y, Swaisgood RR (2015) The acoustic structure of male giant panda bleats varies according to intersexual context. J Acoust Soc Am 138:1305–1312

    Article  PubMed  Google Scholar 

  • Charlton B, Taylor AM, Reby D (2017) Function and evolution of vibrato-like frequency modulation in mammals. Curr Biol 27:2692–2697

    Article  CAS  PubMed  Google Scholar 

  • Charrier I, Mathevon N, Jouventin P (2002) How does a fur seal mother recognize the voice of her pup? An experimental study of Arctocephalus tropicalis. J Exp Biol 205:603–612

    PubMed  Google Scholar 

  • Charrier I, Mathevon N, Jouventin P (2003) Individuality in the voice of fur seal females: an analysis study of the pup attraction call in Arctocephalus tropicalis. Mar Mamm Sci 19:161–172

    Article  Google Scholar 

  • Charrier I, Pitcher BJ, Harcourt R (2009) Vocal recognition of mothers by Australian sea lion pups: individual signature and environmental constraints. Anim Behav 78:1127–1134

    Article  Google Scholar 

  • Charrier I, Ahonen H, Harcourt R (2011) What makes an Australian sea lion (Neophoca cinerea) male’s bark threatening? J Comp Psychol 125:385–392

    Article  PubMed  Google Scholar 

  • Chiba T, Kajiyama M (1958) The vowel: its nature and structure. Phonetic Society of Japan, Tokyo-Kaiseikan

    Google Scholar 

  • Dabbs JM, Mallinger A (1999) High testosterone levels predict low voice pitch among men. Personal Individ Differ 27:801–804

    Article  Google Scholar 

  • Dunn JC, Halenar LB, Davies TG, Cristobal-Azkarate J, Reby D, Sykes D, Dengg S, Fitch WT, Knapp LA (2015) Evolutionary trade-off between vocal tract and testes dimensions in howler monkeys. Curr Biol 25:2839–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fant G (1960) Acoustic theory of speech production. Mouton, The Hague

    Google Scholar 

  • Faragó T, Pongrácz P, Miklósi Á, Huber L, Virányi Z, Range F (2010) Dogs’ expectation about signalers’ body size by virtue of their growls. PLoS One 5:e15175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fedurek P, Slocombe KE, Enigk DK, Thompson ME, Wrangham R, Muller MN (2016) The relationship between testosterone and long-distance calling in wild male chimpanzees. Behav Ecol Sociobiol 70:659–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Feinberg DR, Jones BC, Little AC, Burt DM, Perrett DI (2005) Manipulations of fundamental and formant frequencies influence the attractiveness of human male voices. Anim Behav 69:561–568

    Article  Google Scholar 

  • Fischer J, Kitchen DM, Seyfarth RM, Cheney DL (2004) Baboon loud calls advertise male quality: acoustic features and their relation to rank, age, and exhaustion. Behav Ecol Sociobiol 56:140–148

    Article  Google Scholar 

  • Fischer J, Semple S, Fickenscher G, Jürgens R, Kruse E, Heistermann M, Amir O (2011) Do women’s voices provide cues of the likelihood of ovulation? The importance of sampling regime. PLoS One 6:e24490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch W (1997) Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102(2):1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Fitch WT, Fritz JB (2006) Rhesus macaques spontaneously perceive formants in conspecific vocalisations. J Acoust Soc Am 120:2132–2141

    Article  PubMed  Google Scholar 

  • Fitch WT, Giedd J (1999) Morphology and development of the human vocal tract: a study using magnetic resonance imaging. J Acoust Soc Am 106:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Fitch WT, Hauser MD (1995) Vocal production in nonhuman-primates - acoustics, physiology, and functional constraints on honest advertisement. Am J Primatol 37:191–219

    Article  PubMed  Google Scholar 

  • Fitch WT, Hauser MD (2002) Unpacking “honesty”: generating and extracting information from acoustic signals. In: Megala-Simmons A, Popper A (eds) Animal communication. Springer, Berlin, pp 65–137

    Google Scholar 

  • Fitch W, Reby D (2001) The descended larynx is not uniquely human. Proc R Soc Lond B Biol Sci 268(1477):1669–1675

    Article  CAS  Google Scholar 

  • Fouquet M, Pisanski K, Mathevon N, Reby D (2016) Seven and up: individual differences in male voice fundamental frequency emerge before puberty and remain stable throughout adulthood. R Soc Open Sci 3:160395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frey R, Gebler A (2003) The highly specialized vocal tract of the male Mongolian gazelle (Procapra gutturosa Pallas, 1777 - Mammalia, Bovidae). J Anat 203:451–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey R, Hofmann RR (1996) Evolutionary morphology of the proboscideal nose of Guenther’s Dikdik (Rhyncotragus guetheri Thomas 1894—Mammalia, Bovidae). Zool Anz 235:31–51

    Google Scholar 

  • Frey R, Volodin I, Volodina E (2007) A nose that roars: anatomical specializations and behavioural features of rutting male saiga. J Anat 211:717–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey R, Gebler A, Olson KA, Odonkhuu D, Fritsch G, Batsaikhan N, Stuermer IW (2008) Mobile larynx in Mongolian gazelle: retraction of the larynx during rutting barks in male Mongolian gazelle (Procapra gutturosa Pallas, 1777). J Morphol 269:1223–1237

    Article  PubMed  Google Scholar 

  • Frey R, Volodin I, Volodina E, Soldatova NV, Juldaschev ET (2011) Descended and mobile larynx, vocal tract elongation and rutting roars in male goitred gazelles (Gazella subgutturosa Güldenstaedt, 1780). J Anat 218:566–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamba M, Colombo C, Giacoma C (2012) Acoustic cues to caller identity in lemurs: a case study. J Ethol 30:191–196

    Article  Google Scholar 

  • Garcia M, Charlton BD, Wyman MT, Fitch WT, Reby D (2013) Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals? PLoS One 8:e83946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia M, Herbst CT, Bowling DL, Dunn JC, Fitch WT (2017) Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production. Sci Rep 7:10450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaulin S, Boster J (1985) Cross-cultural differences in sexual dimorphism: is there any variance to be explained? Ethol Sociobiol 6:219–225

    Article  Google Scholar 

  • Ghazanfar A, Turesson H, Maier J, Vandinther R, Patterson RD, Logothetis N (2007) Vocal-tract resonances as indexical cues in rhesus monkeys. Curr Biol 17:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez J (2004) Formant frequencies and body size of speaker: a weak relationship in adult humans. J Phon 32:277–287

    Article  Google Scholar 

  • Gourbal BEF, Barthelemy M, Petit G, Gabrion C (2004) Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Naturwissenschaften 91:1–5

    Article  CAS  Google Scholar 

  • Harris TR, Fitch WT, Goldstein LM, Fashing PJ (2006) Black and white colobus monkey (Colobus guereza) roars as a source of both honest and exaggerated information about body mass. Ethology 112:911–920

    Article  Google Scholar 

  • Hughes SMA-O, Harrison MA (2017) Your cheatin’ voice will tell on you: detection of past infidelity from voice. Evol Psychol 15:1474704917711513

    Article  PubMed  Google Scholar 

  • Hillenbrand JM, Clark MJ (2009) The role of F0 and formant frequencies in distinguishing the voices of men and women. Atten Percept Psychophys 71:1150–1166

    Article  PubMed  Google Scholar 

  • Hodges-Simeon CR, Gaulin SJC, Puts DA (2010) Different vocal parameters predict perceptions of dominance and attractiveness. Hum Nat 21:406–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollien H, Green R, Massey K (1994) Longitudinal research on adolescent voice change in males. J Acoust Soc Am 96:2646–2653

    Article  CAS  PubMed  Google Scholar 

  • Ives DT, Smith DRR, Patterson RD (2005) Discrimination of speaker size from syllable phrases. J Acoust Soc Am 118:3816

    Article  PubMed  Google Scholar 

  • Janik V, Sayigh L, Wells RS (2006) Signature whistle shape conveys identity information to bottlenose dolphins. Proc Natl Acad Sci 103:8293–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen G, Sade J (1960) The vocal organ of the howling monkey (Alouatta palliata). J Morphol 107:123–140

    Article  CAS  PubMed  Google Scholar 

  • Kidjo N, Cargnelutti B, Charlton BD, Wilson C, Reby D (2008) Vocal behaviour in the endangered Corsican deer: description and phylogenetic implications. Bioacoustics 18:159–181

    Article  Google Scholar 

  • Klemuk S, Riede T, Walsh E, Titze I (2011) Adapted to roar: functional morphology of tiger and lion vocal folds. PLoS One 6:e27029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles KK, Little AC (2016) Vocal fundamental and formant frequencies affect perceptions of speaker cooperativeness. J Exp Psychol 69:1657–1675

    Article  Google Scholar 

  • Koda H, Murai T, Tuuga A, Goossens B, Nathan SKSS, Stark DJ, Ramirez DAR, Sha JCM, Osman I, Sipangkui R, Seino S, Matsuda I (2018) Nasalization by Nasalis larvatus: larger noses audiovisually advertise conspecifics in proboscis monkeys. Sci Adv 4:eaaq0250

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreiman J, Sidtis D (2011) Foundations of voice studies: an interdisciplinary approach to voice production and perception. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Lemasson A, Remeuf K, Trabalon M, Cuir F, Hausberger M (2015) Mares prefer the voices of highly fertile stallions. PLoS One 10:e0118468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leongómez JD, Mileva VR, Little AC, Roberts SC (2017) Perceived differences in social status between speaker and listener affect the speaker’s vocal characteristics. PLoS One 12:e0179407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levrero F, Mathevon N (2013) Vocal signature in wild infant chimpanzees. Am J Primatol 75:324–332

    Article  PubMed  Google Scholar 

  • Levrero F, Mathevon N, Pisanski K, Gustafsson E, Reby D (2018) The pitch of babies’ cries predicts their voice pitch at age 5. Biol Lett 14:20180065

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Jiang Z, Zhang L, Zhong Z, Ping X, Xu H, Li C (2016) Bioacoustic cues and their relations to dominance rank in Père David’s deer stags. Anim Prod Sci 56:971–977

    Article  Google Scholar 

  • Markova D, Richer L, Pangelinan M, Schwartz DH, Leonard G, Perron M, Pike GB, Veillette S, Chakravarty MM, Pausova Z, Paus T (2016) Age- and sex-related variations in vocal-tract morphology and voice acoustics during adolescence. Horm Behav 81:84–96

    Article  PubMed  Google Scholar 

  • McComb KE (1991) Female choice for high roaring rates in red deer, Cervus elaphus. Anim Behav 41:79–88

    Article  Google Scholar 

  • McComb K, Reby D, Baker L, Moss C, Sayialel S (2003) Long-distance communication of acoustic cues to social identity in African elephants. Anim Behav 65:317–329

    Article  Google Scholar 

  • McElligott AG, Birrer M, Vannoni E (2006) Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. J Zool 270:340–345

    Article  Google Scholar 

  • Mehta PH, Josephs RA (2010) Testosterone and cortisol jointly regulate dominance: evidence for a dual-hormone hypothesis. Horm Behav 58:898–906

    Article  CAS  PubMed  Google Scholar 

  • Melendez KV, Feng AS (2010) Communication calls of little brown bats display individual-specific characteristics. J Acoust Soc Am 128:919–923

    Article  PubMed  PubMed Central  Google Scholar 

  • Montano KJ, Tigue CC, Isenstein SGE, Barclay P, Feinberg DR (2017) Men’s voice pitch influences women’s trusting behavior. Evol Hum Behav 38:293–297

    Article  Google Scholar 

  • Moulines E, Charpentier F (1990) Pitch synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Comm 9:453–467

    Article  Google Scholar 

  • O’Connor JJM, Re DE, Feinberg DR (2011) Voice pitch influences perceptions of sexual infidelity. Evol Psychol 9:147470491100900109

    Google Scholar 

  • O’Connor JJM, Fraccaro PJ, Feinberg DR (2012) The influence of male voice pitch on women’s perceptions of relationship investment. J Evol Psychol 10:1–13

    Article  Google Scholar 

  • Ohala JJ (1984) An ethological perspective on common cross-language utilization of F0 of voice. Phonetica 41:1–16

    Article  CAS  PubMed  Google Scholar 

  • Owren MJ, Rendall D (2001) Sound on the rebound: bringing form and function back to the forefront in understanding nonhuman primate vocal signaling. Evol Anthropol 10:58–71

    Article  Google Scholar 

  • Palacios V, Font E, Márquez R (2007) Iberian wolf howls: acoustic structure, individual variation, and a comparison with North American populations. J Mammal 88:606–613

    Article  Google Scholar 

  • Pavela Banai I, Banai B, Bovan K (2017) Vocal characteristics of presidential candidates can predict the outcome of actual elections. Evol Hum Behav 38:309–314

    Article  Google Scholar 

  • Pfefferle D, Fischer J (2006) Sounds and size: identification of acoustic variables that reflect body size in hamadryas baboons, Papio hamadryas. Anim Behav 72:43–51

    Article  Google Scholar 

  • Pietraszewski D, Wertz AE, Bryant GA, Wynn K (2017) Three-month-old human infants use vocal cues of body size. Proc R Soc B 284:20170656–20170659

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisanski K, Feinberg DR (2018) Voice attractiveness. In: Belin P, Fruehholz S (eds) Oxford handbook of voice perception. Oxford University Press, New York

    Google Scholar 

  • Pisanski K, Rendall D (2011) The prioritization of voice fundamental frequency or formants in listener’s assessments of speaker size, masculinity, and attractiveness. J Acoust Soc Am 129:2201–2212

    Article  PubMed  Google Scholar 

  • Pisanski K, Fraccaro PJ, Tigue CC, O’Connor JJM, Feinberg DR (2014a) Return to Oz: voice pitch facilitates assessments of men’s body size. J Exp Psychol Hum Percept Perform 40:1316–1331

    Article  PubMed  Google Scholar 

  • Pisanski K, Fraccaro PJ, Tigue CC, O’Connor JJM, Röder S, Andrews PW, Fink B, DeBruine LM, Jones BC, Feinberg DR (2014b) Vocal indicators of body size in men and women: a meta-analysis. Anim Behav 95:89–99

    Article  Google Scholar 

  • Pisanski K, Cartei V, McGettigan C, Raine J, Reby D (2016a) Voice modulation: a window into the origins of human vocal control? Trends Cogn Sci 20:04–318

    Article  Google Scholar 

  • Pisanski K, Oleszkiewicz A, Sorokowska A (2016b) Can blind persons accurately assess body size from the voice? Biol Lett 12:20160063

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisanski K, Feinberg D, Oleszkiewicz A, Sorokowska A (2017) Voice cues are used in a similar way by blind and sighted adults when assessing women’s body size. Sci Rep 7:10329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pisanski K, Bhardwaj K, Reby D (2018) Women’s voice pitch lowers after pregnancy. Evol Hum Behav 39:457–463

    Article  Google Scholar 

  • Pitcher BJ, Briefer EF, McElligott AG (2015) Intrasexual selection drives sensitivity to pitch, formants and duration in the competitive calls of fallow bucks. BMC Evol Biol 15:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puts D, Hodges C, Cárdenas R, Gaulin S (2007) Men’s voices as dominance signals: vocal fundamental and formant frequencies influence dominance. Evol Hum Behav 28(5):340–344

    Article  Google Scholar 

  • Puts DA, Apicella CL, Cardenas RA (2012a) Masculine voices signal men’s threat potential in forager and industrial societies. Proc R Soc B 279:601–609

    Article  PubMed  Google Scholar 

  • Puts DA, Jones BC, DeBruine LM (2012b) Sexual selection on human faces and voices. J Sex Res 49:227–243

    Article  PubMed  Google Scholar 

  • Puts DA, Hill AK, Bailey DH, Walker RS, Rendall D, Wheatley JR, Welling LL, Dawood K, Cárdenas R, Burriss RP, Jablonski NG, Shriver MD, Weiss D, Lameira AR, Apicella CL, Owren MJ, Barelli C, Glenn ME, Ramos-Fernandez G (2016) Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proc R Soc B 283:20152830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raine J, Pisanski K, Reby D (2017) Tennis grunts communicate acoustic cues to sex and contest outcome. Anim Behav 130:47–55

    Article  Google Scholar 

  • Rantala MJ, Moore FR, Skrinda I, Krama T, Kivleniece I, Kecko S, Krams I (2012) Evidence for the stress-linked immunocompetence handicap hypothesis in humans. Nat Commun 3:694

    Article  PubMed  CAS  Google Scholar 

  • Reby D, McComb K (2003) Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Anim Behav 65:519–530

    Article  Google Scholar 

  • Reby D, McComb K, Cargnelutti B, Darwin C, Fitch WT, Clutton-Brock TH (2005) Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proc R Soc B 272:941–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Reby D, Andre-Obrecht R, Galinier A, Farinas J, Cargnelutti B (2006) Cepstral coefficients and hidden Markov models reveal idiosyncratic voice characteristics in red deer (Cervus elaphus) stags. J Acoust Soc Am 120:4080–4089

    Article  PubMed  Google Scholar 

  • Reby D, Charlton BD, Locatelli Y, McComb K (2010) Oestrous red deer hinds prefer male roars with higher fundamental frequencies. Proc R Soc B 277:2747–2753

    Article  PubMed  PubMed Central  Google Scholar 

  • Reby D, Wyman MT, Frey R, Passilongo D, Gilbert J, Locatelli Y, Charlton BD (2016) Evidence of biphonation and source-filter interactions in the bugles of male North American wapiti (Cervus canadensis). J Exp Biol 219:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Rendall D (2003) Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. J Acoust Soc Am 113:3390–3402

    Article  PubMed  Google Scholar 

  • Rendall D, Owren MJ, Rodman PS (1998) The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. J Acoust Soc Am 103:602–614

    Article  CAS  PubMed  Google Scholar 

  • Rendall D, Owren MJ, Weerts E, Hienz RD (2004) Sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons and their perceptual discrimination by baboon listeners. J Acoust Soc Am 115:411–421

    Article  PubMed  Google Scholar 

  • Rendall D, Vokey JR, Nemeth C (2007) Lifting the curtain on the Wizard of Oz: biased voice-based impressions of speaker size. J Exp Psychol Hum Percept Perform 33:1208–1219

    Article  PubMed  Google Scholar 

  • Riede T, Fitch WT (1999) Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J Exp Biol 202:2859–2867

    CAS  PubMed  Google Scholar 

  • Ryalls JH, Lieberman P (1982) Fundamental-frequency and vowel perception. J Acoust Soc Am 72:1631–1634

    Article  CAS  PubMed  Google Scholar 

  • Sanvito S, Galimberti F, Miller EH (2007) Vocal signalling in male southern elephant seals is honest but imprecise. Anim Behav 73:287–299

    Article  Google Scholar 

  • Schön-Ybarra M (1995) A comparative approach to the non-human primate vocal tract: implications for sound production. In: Zimmermann E, Newman JD (eds) Current topics in primate vocal communication. Plenum Press, NewYork, pp 185–198

    Chapter  Google Scholar 

  • Searby A, Jouventin P (2003) Mother-lamb acoustic recognition in sheep: a frequency coding. Proc R Soc B 270:1765–1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Šebesta P, Kleisner K, Tureček P, Kočnar T, Akoko RM, Třebický V, Havlíček J (2017) Voices of Africa: acoustic predictors of human male vocal attractiveness. Anim Behav 127:205–211

    Article  Google Scholar 

  • Smith DRR, Patterson RD, Turner R (2005) The processing and perception of size information in speech sounds. J Acoust Soc Am 117:305–318

    Article  PubMed  Google Scholar 

  • Stoeger AS, Baotic A (2016) Information content and acoustic structure of male African elephant social rumbles. Sci Rep 6:1–8

    Article  CAS  Google Scholar 

  • Stulp G, Barrett L (2014) Evolutionary perspectives on human height variation. Biol Rev 91:206–234

    Article  PubMed  Google Scholar 

  • Suthers RA, James MF (1973) Mechanisms of sound production by echolocating bats. Am Zool 13:1215–1226

    Article  Google Scholar 

  • Taylor A, Reby D, McComb K (2010) Size communication in domestic dog, Canis familiaris, growls. Anim Behav 79:205–210

    Article  Google Scholar 

  • Taylor A, Reby D, McComb K (2011) Cross modal perception of body size in domestic dogs (Canis familiaris). PLoS One 6:e17069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Charlton BD, Reby D (2016) Vocal production by terrestrial mammals: source, filter and function. In: Suthers RA, Fitch WT, Fay RR, Popper A (eds) Vertebrate sound production and acoustic communication. Springer, Berlin, pp 229–259

    Chapter  Google Scholar 

  • Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Titze IR (2011) Vocal fold mass is not a useful quantity for describing F0 in vocalization. J Speech Lang Hear Res 54:520–522

    Article  PubMed  Google Scholar 

  • Torriani MV, Vannoni E, McElligott AG (2006) Mother-young recognition in an ungulate hider species: a unidirectional process. Am Nat 168:412–420

    Article  PubMed  Google Scholar 

  • Townsend S, Charlton B, Manser M (2014) Acoustic cues to identity and predator context in meerkat barks. Anim Behav 94:143–149

    Article  Google Scholar 

  • Vannoni E, McElligott AG (2007) Individual acoustic variation in fallow deer (Dama dama) common and harsh groans: a source-filter theory perspective. Ethology 113:223–234

    Article  Google Scholar 

  • Vannoni E, McElligott AG (2008) Low frequency groans indicate larger and more dominant fallow deer (Dama dama) males. PLoS One 3:e3113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weissengruber GE, Forstenpointner G, Peters G, Kübber Heiss A, Fitch WT (2002) Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyx jubatus) and domestic cat (Felis silvestris f. catus). J Anat 201:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman MT, Mooring MS, McCowan B, Penedo MCT, Reby D, Hart LA (2012) Acoustic cues to size and quality in the vocalizations of male North American bison, Bison bison. Anim Behav 84:1381–1391

    Article  Google Scholar 

  • Zhang J, Reid SA (2017) Aggression in young men high in threat potential increases after hearing low-pitched male voices: two tests of the retaliation-cost model. Evol Hum Behav 38:513–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charlton, B.D., Pisanski, K., Raine, J., Reby, D. (2020). Coding of Static Information in Terrestrial Mammal Vocal Signals. In: Aubin, T., Mathevon, N. (eds) Coding Strategies in Vertebrate Acoustic Communication. Animal Signals and Communication, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-39200-0_5

Download citation

Publish with us

Policies and ethics