Skip to main content

Some Novel Solutions of the Coupled Whitham-Broer-Kaup Equations

  • Conference paper
  • First Online:
4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019) (CMES 2019)

Abstract

The shallow water equations provide a vast range of applications in the ocean, atmospheric modeling, and pneumatic computing, which can also be utilized to modeling flows in rivers and coastal areas. The Bernoulli sub-equation function method is utilized to build the analytic solutions of the (1+1) dimensional coupled Whitham-Broer-Kaup (WBK) equations. This partial differential equation model is translated into ordinary differential equations in order to construct new exponential prototype structures. As a result, the novel results are obtained and then plotted in 3D and 2D surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-018-1322-1

    Article  Google Scholar 

  2. Yokus, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Numerical simulation and solutions of the two-component second order KdV evolutionarysystem. Numer. Methods Partial Differ. Equ. (2018). https://doi.org/10.1002/num.22192

    Article  MATH  Google Scholar 

  3. Yousif, M.A., Mahmood, B.A., Ali, K.K., Ismael, H.F.: Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet. Int. J. Pure Appl. Math. 107(2), 289–300 (2016). https://doi.org/10.12732/ijpam.v107i2.1

    Article  Google Scholar 

  4. Bulut, H., Ergüt, M., Asil, V., Bokor, R.H.: Numerical solution of a viscous incompressible flow problem through an orifice by Adomian decomposition method. Appl. Math. Comput. 153(3), 733–741 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Ismael, H.F., Ali, K.K.: MHD casson flow over an unsteady stretching sheet. Adv. Appl. Fluid Mech. (2017). https://doi.org/10.17654/FM020040533

    Article  Google Scholar 

  6. Baskonus, H.M., Bulut, H.: On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math. (2015). https://doi.org/10.1515/math-2015-0052

    Article  MathSciNet  MATH  Google Scholar 

  7. Bueno-Orovio, A., Pérez-García, V.M., Fenton, F.H.: Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28(3), 886–900 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kocak, Z.F., Bulut, H. and Yel, G.: The solution of fractional wave equation by using modified trial equation method and homotopy analysis method, in AIP Conference Proceedings (2014)

    Google Scholar 

  9. Nofal, T.A.: An approximation of the analytical solution of the Jeffery-Hamel flow by homotopy analysis method. Appl. Math. Sci. 5(53), 2603–2615 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Ismael, H.F.: Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation. Int. J. Adv. Appl. Sci. J. 6(2), 81–86 (2017). https://doi.org/10.1371/journal.pone.0002559

    Article  Google Scholar 

  11. Ali, K.K., Ismael, H.F., Mahmood, B.A., Yousif, M.A.: MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate. Int. J. Adv. Appl. Sci. 4(1), 55–58 (2017)

    Article  Google Scholar 

  12. Ismael, H.F., Arifin, N.M.: Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation. JP J. Heat Mass Transf. 15(4) (2018). https://doi.org/10.17654/HM015040847

    Article  Google Scholar 

  13. Zeeshan, A., Ismael, H.F., Yousif, M.A., Mahmood, T., Rahman, S.U.: Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium. J. Magn. 23(4), 491–498 (2018). https://doi.org/10.4283/JMAG.2018.23.4.491

    Article  Google Scholar 

  14. Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik (Stuttg) (2017). https://doi.org/10.1016/j.ijleo.2016.10.135

    Article  Google Scholar 

  15. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. (2016). https://doi.org/10.1007/s11082-016-0831-4

    Article  Google Scholar 

  16. Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos. Solitons Fractals (2003). https://doi.org/10.1016/S0960-0779(02)00483-6

    Article  MATH  Google Scholar 

  17. Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. (2015). https://doi.org/10.1515/phys-2015-0035

    Article  MATH  Google Scholar 

  18. Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media (2016). https://doi.org/10.1080/17455030.2015.1132860

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei, G., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab4a50

  20. Ilhan, O.A., Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1187-3

    Article  Google Scholar 

  21. Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: Solitons in an inhomogeneous Murnaghan’s rod. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12085-y

  22. Houwe, A., Hammouch, Z., Bienvenue, D., Nestor, S. and Betchewe, G.: Nonlinear Schrödingers equations with cubic nonlinearity: M-derivative soliton solutions by \(\exp (-\Phi (\xi )) \)-expansion method (2019)

    Google Scholar 

  23. Manafian, J., Aghdaei, M.F.: Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method. Eur. Phys. J. Plus (2016). https://doi.org/10.1140/epjp/i2016-16097-3

    Article  Google Scholar 

  24. Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12096-8

    Article  Google Scholar 

  25. Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1406-3

  26. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Optik (Stuttg). (2018). https://doi.org/10.1016/j.ijleo.2018.02.086

    Article  Google Scholar 

  27. Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach. Optik (Stuttg). (2018). https://doi.org/10.1016/j.ijleo.2018.08.007

    Article  Google Scholar 

  28. Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1+ 1)-dimensional Benjamin-Bona-Mahony and (2+ 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)

    Article  Google Scholar 

  29. Chen, Y., Li, B., Zhang, H.: New exact travelling wave solutions for the shallow long wave approximate equations. Appl. Math. Comput. 160(1), 77–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Benkhaldoun, F., Elmahi, I., Seaïd, M.: A new finite volume method for flux-gradient and source-term balancing in shallow water equations. Comput. Methods Appl. Mech. Eng. 199(49–52), 3324–3335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Imani, A.A., Ganji, D.D., Rokni, H.B., Latifizadeh, H., Hesameddini, E., Rafiee, M.H.: Approximate traveling wave solution for shallow water wave equation. Appl. Math. Model. 36(4), 1550–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rafei, M., Daniali, H.: Application of the variational iteration method to the Whitham-Broer-Kaup equations. Comput. Math. Appl. 54(7–8), 1079–1085 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kröger, T., Lukáčová-Medvid’ová, M.: An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions. J. Comput. Phys. 206(1), 122–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kesserwani, G., Ghostine, R., Vazquez, J., Ghenaim, A., Mosé, R.: Application of a second-order Runge-Kutta discontinuous Galerkin scheme for the shallow water equations with source terms. Int. J. Numer. Methods Fluids 56(7), 805–821 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shang, Y.: Böcklund transformation, Lax pairs and explicit exact solutions for the shallow water waves equation. Appl. Math. Comput. 187(2), 1286–1297 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Wazwaz, A.-M.: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method. Appl. Math. Comput. 202(1), 275–286 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Kumar, M., Tiwari, A.K., Kumar, R.: More of coupled solutions Whitham–Broer–Kaup equations. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89(4), 747–755 (2019)

    Article  Google Scholar 

  38. Xie, F., Yan, Z., Zhang, H.: Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations. Phys. Lett. A 285(1–2), 76–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezha H. Abdulkareem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdulkareem, H.H., Ismael, H.F., Panakhov, E.S., Bulut, H. (2020). Some Novel Solutions of the Coupled Whitham-Broer-Kaup Equations. In: Dutta, H., Hammouch, Z., Bulut, H., Baskonus, H. (eds) 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019). CMES 2019. Advances in Intelligent Systems and Computing, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-030-39112-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39112-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39111-9

  • Online ISBN: 978-3-030-39112-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics