Skip to main content

A Gradient-Based Globalization Strategy for the Newton Method

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The Newton method is one of the most powerful methods for the solution of smooth unconstrained optimization problems. It has local quadratic convergence in a neighborhood of a local minimum where the Hessian is positive definite and Lipschitz continuous. Several strategies have been proposed in order to achieve global convergence. They are mainly based either on the modification of the Hessian together with a line search or on the adoption of a restricted-step strategy. We propose a globalization technique that combines the Newton and gradient directions, producing a descent direction on which a backtracking Armijo line search is performed. Our work is motivated by the effectiveness of gradient methods using suitable spectral step-length selection rules. We prove global convergence of the resulting algorithm, and quadratic rate of convergence under suitable second-order optimality conditions. A numerical comparison with a modified Newton method exploiting Hessian modifications shows the effectiveness of our approach.

This work was partially supported by Gruppo Nazionale per il Calcolo Scientifico - Istituto Nazionale di Alta Matematica (GNCS-INdAM). Marco Viola was also supported by the MOD_CELL_DEV Project - Programma di finanziamento della Ricerca di Ateneo, University of Naples Federico II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, L., De Simone, V., di Serafino, D.: On the application of the spectral projected gradient method in image segmentation. J. Math. Imaging and Vis. 54(1), 106–116 (2016)

    Article  MathSciNet  Google Scholar 

  2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Belmont (2016)

    MATH  Google Scholar 

  4. Crisci, S., Ruggiero, V., Zanni, L.: Steplength selection in gradient projection methods for box-constrained quadratic programs. Appl. Math. Comput. 356, 312–327 (2019)

    MathSciNet  MATH  Google Scholar 

  5. De Asmundis, R., di Serafino, D., Landi, G.: On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed problems. J. Comput. Appl. Math. 302, 81–93 (2016)

    Article  MathSciNet  Google Scholar 

  6. di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176–195 (2018)

    MathSciNet  MATH  Google Scholar 

  7. di Serafino, D., Toraldo, G., Viola, M., Barlow, J.: A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables. SIAM J. Optim. 28(4), 2809–2838 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. B 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  9. Dostál, Z., Toraldo, G., Viola, M., Vlach, O.: Proportionality-based gradient methods with applications in contact mechanics. In: Kozubek, T., et al. (eds.) HPCSE 2017. LNCS, vol. 11087, pp. 47–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97136-0_4

    Chapter  Google Scholar 

  10. Fang, H., O’Leary, D.P.: Modified Cholesky algorithms: a catalog with new approaches. Math. Program. 115(2), 319–349 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2013)

    MATH  Google Scholar 

  12. Gill, P., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization. Math. Program. 7(1), 311–350 (1974)

    Article  MathSciNet  Google Scholar 

  13. Han, L., Neumann, M.: Combining quasi-Newton and Cauchy directions. Int. J. Appl. Math. 22(2), 167–191 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Moré, J.J., Sorensen, D.C.: Newton’s method. In: Golub, G. (ed.) Studies in Numerical Analysis, pp. 29–82. The Mathematical Association of America, Providence (1984)

    Google Scholar 

  15. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Algorithm 566: FORTRAN subroutines for testing unconstrained optimization software [C5], [E4]. ACM Trans. Math. Softw. 7(1), 136–140 (1981)

    Article  Google Scholar 

  16. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Boston (2013). https://doi.org/10.1007/978-1-4419-8853-9

    Book  MATH  Google Scholar 

  17. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  18. Polak, E.: Optimization: Algorithms and Consistent Approximations, vol. 124. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0663-7

    Book  MATH  Google Scholar 

  19. Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Prob. 25(4), 045010 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Viola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

di Serafino, D., Toraldo, G., Viola, M. (2020). A Gradient-Based Globalization Strategy for the Newton Method. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics