Skip to main content

Toward Smart and Secure IoT Based Healthcare System

  • Chapter
  • First Online:
Internet of Things, Smart Computing and Technology: A Roadmap Ahead

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 266))

Abstract

The protection of a patient’s data is the prime concern in the healthcare sector. With the escalation in the adoption of Internet of Things (IoT) technology for the smart healthcare system, incidences of the revelation of privacy data also upswings hence it becomes necessary to devise a secure smart healthcare system. The requirement of the secure healthcare system is based on a critical survey and this year’s Thales India Data Threat report. The report discloses the percentage of data breaches in past years and emphasizes the need for a tightening of patient data privacy regulation. As a result, the secure smart healthcare system has been recognized as a high priority goal to improve the sustainability of society. However, to concoct a legitimate secure smart healthcare system, threat triggered by integrating multiple devices and protocols need to be curtailed. In addition, a big challenge is to achieve accuracy despite the generation of a colossal amount of data per unit time. Encryption is the top choice for satisfying data privacy laws. Still, only encryption cannot impede data breach activities. It doesn’t always make sense to lush low constraint IoT devices on an algorithm encrypting every data, because it will impose a substantial burden on the system. It is imperative to develop techniques that will detect and prevent threats that vex the security of a healthcare system. Here authors attempt to analyze the smart healthcare architecture, its threats, vulnerabilities and the security measures to provide a secure smart healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Medagliani, P., Leguay, J., Duda, A., Rousseau, F., Duquennoy, S., Raza, S., Ferrari, G., Gonizzi, P., Cirani, S., Veltri, L., Montón, M., Domingo Prieto, M., Dohler, M., Villajosana, I., Dupont, O.: Internet of Things Application from Research and Innovation to Market Deployment (2014)

    Google Scholar 

  2. Khambete, N.D., Murray, A.: National efforts to improve healthcare technology management and medical device safety in India. In: 7th International Conference on Appropriate Healthcare Technologies for Developing Countries, pp. 1–5. IET (2012)

    Google Scholar 

  3. Dey, N., Ashour, A. (eds.): Classification and Clustering in Biomedical Signal Processing. IGI Global, Hershey (2016)

    Google Scholar 

  4. Abouelmehdi, K., Beni-Hssane, A., Khaloufi, H., Saadi, M.: Big data security and privacy in healthcare: a review. In: The 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017) (2017)

    Article  Google Scholar 

  5. Ellen, N.: Security Firm Finds Link between China and Anthem Hack. The Washington Post, 27 Feb 2015. Web, Feb 2016

    Google Scholar 

  6. Kwon, J., Johnson, M.: Protecting patient data—the economic perspective of healthcare security. IEEE Secur. Priv. (2015)

    Google Scholar 

  7. Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.: Medical cyber–physical systems: a survey. J. Med. Syst. 42(4), 74 (2018)

    Article  Google Scholar 

  8. Alessandrelli, D., Mainetti, L., Patrono, L., Pellerano, G., Petracca, M., Stefanizzi, M.L.: Implementation and validation of an energy-efficient MAC scheduler for WSNs by a test bed approach. In: 2012 International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2012), art. no. 6347615 (2012)

    Google Scholar 

  9. Catarinucci, L., et al.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015). https://doi.org/10.1109/JIOT.2015.2417684

    Article  Google Scholar 

  10. Malan, D., Jones, T.F., Welsh, M., Moulton, S.: CodeBlue: an Ad-Hoc sensor network infrastructure for emergency medical care. In: Proceedings of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004), Boston, MA, USA, 6–9 June 2004

    Google Scholar 

  11. Wood, A.V., Doan, G., Cao, T., Selavo, Q., Wu, L., Fang, Y., He, L., Lin, Z., Stankovic, S.: ALARM-NET: wireless sensor networks for assisted-living and residential monitoring; Technical Report CS-2006-01; Department of Computer Science, University of Virginia, Charlottesville, VA, USA (2006)

    Google Scholar 

  12. Ko, J., Lim, J.H., Chen, Y., Musaloiu-E. R., Terzis, A., Masson, G.M.: MEDiSN: medical emergency detection in sensor networks. ACM Trans. Embed. Comput. Syst. 10, 1–29 (2010)

    Article  Google Scholar 

  13. Tung, H.C., Tsang, K.F., Lam, K.L., Tung, H.Y., Li, B.Y.S., Yeung, L.F., Ko, K.T., Lau, W.H., Rakocevic, V.: A mobility-enabled inpatient monitoring system using a ZigBee. Sensors (Basel) 14(2), 2397–2416 (2014). https://doi.org/10.3390/s140202397

    Article  Google Scholar 

  14. Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Sherratt, R.S.: Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans. Consum. Electron. 63(4), 442–449 (2017)

    Article  Google Scholar 

  15. Winter, T., et al.: RPL: IPv6 routing protocol for low power and lossy networks. Internet Engineering Task Force (IETF), Fremont, CA, USA, Request for Comments: 6550 (2012)

    Google Scholar 

  16. Chen, M., Fang, Y.: Lightweight anonymous authentication protocol for RFID. IEEE Trans. Netw. 25(3) (2017)

    Google Scholar 

  17. Fan, K., Member, IEEE, Jiang, W., Li, H., Member, IEEE, Yang, Y., Member, IEEE: Lightweight RFID protocol for medical privacy protection in IoT. IEEE Trans. Ind. Inf. 14(4) (2018)

    Article  Google Scholar 

  18. Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. (IJACI) 1(1), 15–26 (2009)

    Article  Google Scholar 

  19. Archip, A., Botezatu, N., Şerban, E., Herghelegiu, P., Zală, A.: An IoT based system for remote patient monitoring. In: 2016 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, pp. 1–6 (2016). https://doi.org/10.1109/CarpathianCC.2016.7501056

  20. Swaroop, K.N., Chandu, K., Gorrepotu, R, Deb, S.: A health monitoring system for vital signs using IoT. Internet Things 5, 116–129 (2019). ISSN: 2542-6605. https://doi.org/10.1016/j.iot.2019.01.004. https://www.sciencedirect.com/science/article/pii/S2542660518300349

    Article  Google Scholar 

  21. Pai, S., et al.: Confidentiality in sensor networks: transactional information. IEEE Secur. Priv. Mag. 6(4), 28–35 (2008)

    Google Scholar 

  22. Hasan, M., Milon Islam, Md., Ishrak Islam Zarif, Md., Hashem, M.M.A.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet Things 7, 100059 (2019). ISSN: 2542-6605. https://doi.org/10.1016/j.iot.2019.100059. https://www.sciencedirect.com/science/article/pii/S2542660519300241

    Article  Google Scholar 

  23. Fedor, S., Collier, M.: On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), Niagara Falls, ON, pp. 380–385 (2007)

    Google Scholar 

  24. Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A., Richardson, M.: A Security Threat Analysis for Routing Protocol for Low-power and Lossy Networks (RPLs), RFC 7416, Internet Engineering Task Force (2015)

    Google Scholar 

  25. Tang, W., Ma, X., Huang, J., Wei, J.: Toward improved RPL: a congestion avoidance multipath routing protocol with time factor for wireless sensor networks. J. Sens. 2016, 1–11 (2016). https://doi.org/10.1155/2016/8128651

    Article  Google Scholar 

  26. Le, A., Loo, J., Luo, Y., Lasebae, A.: The impacts of internal threats towards routing protocol for low power and lossy network performance. In: IEEE Symposium on Computers and Communications (ISCC'13), pp. 789–794 (2013)

    Google Scholar 

  27. Wallgren, L., Raza, S., Voigt, T.: Routing attacks and countermeasures in the RPL-based internet of things. Int. J. Distrib. Sens. Netw. (2013). https://doi.org/10.1155/2013/794326

    Article  Google Scholar 

  28. Bhandari, K.S., Hosen, A.S.M., Cho, G.H.: CoAR: Congestion-Aware Routing Protocol for Low Power and Lossy Networks for IoT Applications Sensors (2018)

    Article  Google Scholar 

  29. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58, 122103(15) (2015). https://doi.org/10.1007/s11432-015-5459-7

    Google Scholar 

  30. Sridevi, S., Priya, S., Karthigai Kumar, P., SivaMangai, N.M., Rejula, V.: FPGA implementation of efficient AES encryption. In: ICIIECS’15 (n.d.)

    Google Scholar 

  31. Bansod, G., Raval, N., Pisharoty, N.: Implementation of a new lightweight encryption design for embedded security. IEEE Trans. (2015)

    Google Scholar 

  32. Feizi, S., Ahmadi, A.: A hardware implementation of Simon cryptography algorithm. In: ICCKE-2014

    Google Scholar 

  33. Nascimento, F.M., dos Santos, F.M., Moreno, E.D.: A VHDL implementation of the Lightweight Cryptographic Algorithm HIGHT, Sept 2015

    Google Scholar 

  34. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: A Bit-slice Ultra-Lightweight Block Cipher, Suitable for Multiple Platforms (2014)

    Google Scholar 

  35. Granjal, J., Monteiro, E., Sá Silva, J.: Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3), 1294–1312 (2015) (third quarter). https://doi.org/10.1109/COMST.2015.2388550

    Article  Google Scholar 

  36. Kimbahune, V.V., Deshpande, A.V., Mahalle, P.N.: Lightweight key management for adaptive addressing in next generation internet. Int. J. Ambient Comput. Intell. (IJACI) 8(1), 50–69 (2017)

    Article  Google Scholar 

  37. Bogdanov, A., et al.: Hash functions and RFID tags: mind the gap. In: Proceedings of the CHES, pp. 283–299 (2008)

    Google Scholar 

  38. Ranasinghe, D.C., Cole, P.H.: An evaluation framework, Chapter 8. In: Networked RFID Systems and Lightweight Cryptography. Springer, Berlin, Germany, Nov 2008

    Google Scholar 

  39. Pathan, S.K., Deshmukh, S.N., Deshmukh, R.R.: Kerberos authentication system-a public key extension. Int. J. Recent Trends Eng. 1(2), 15 (2009)

    Google Scholar 

  40. Raza, S., Duquennoy, S., Voigt, T.: Securing communication in 6LoWPAN with compressed IPsec. In: Proceedings of the International Conference on DCOSS Workshops, pp. 1–8 (2011)

    Google Scholar 

  41. Raza, S., Duquennoy, S., Hoglund, J., Roedig, U., Voigt, T.: Secure communication for the Internet of Things—a comparison of link-layer security and IPsec for 6LoWPAN. Secur. Commun. Netw. 7(12), 2654–2668 (2014)

    Article  Google Scholar 

  42. Kim, E., Kaspar, D., Vasseur, J.P.: Design, and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), Internet Engineering Task Force (IETF), Request for Comments: 6568, Category: Informational, ISSN: 2070-1721

    Google Scholar 

  43. Yaoa, X., Chena, Z., Tian, Y.: A Lightweight Attribute-Based Encryption Scheme for the Internet of Things. Elsevier (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Sanjay Ambarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambarkar, S.S., Shekokar, N. (2020). Toward Smart and Secure IoT Based Healthcare System. In: Dey, N., Mahalle, P., Shafi, P., Kimabahune, V., Hassanien, A. (eds) Internet of Things, Smart Computing and Technology: A Roadmap Ahead. Studies in Systems, Decision and Control, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-39047-1_13

Download citation

Publish with us

Policies and ethics