Skip to main content

Ecological Effects of Chemical Contaminants Adsorbed to Microplastics

  • Reference work entry
  • First Online:
Handbook of Microplastics in the Environment

Abstract

Microplastics (MPs) have become a global concern, owing to frequent detection in aqueous and soil eco-systems. Their transport, release, and the influence of MPs-bound chemical contaminants on aquatic life and soil organisms have been widely investigated. Research studies have confirmed interaction of both organic and inorganic contaminants towards MPs. Weak bond formation of contaminants such as toxic metals and antibiotics with MPs, leading to rapid desorption whereas strongly bound contaminants are taken along with the microplastic particles as a carrier both in aquatic and terrestrial environments. However, polymer type, color, particle size, and weathering degree are factors affecting both adsorption and desorption capacities of contaminants. MP’s behavior as a vector has influenced the transport of molecules such as pharmaceuticals, i.e., antibiotics from one place to another, which may develop antibiotic resistance in microbes. Moreover, toxicological effects have been identified on aquatic vertebrates and invertebrates, resulting in digestive tract obstructions and inflammation; however, they cannot be delineated from MPs or due to the adsorbed contaminants. Biosolid application to farmlands may transport MPs-bound contaminants to the soil system, reducing the plant performance. At the same time, these contaminants can be taken up and accumulate in crops. Constant exposure to chemical contaminants from MPs leads to bioaccumulation of toxic compounds in plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils, Heavy metals in soils, Springer, Dordrecht, pp 11–50

    Google Scholar 

  • Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20

    CAS  Google Scholar 

  • Anderson JC, Park BJ, Palace VP (2016) Microplastics in aquatic environments: implications for Canadian ecosystems. Environ Pollut 218:269–280. https://doi.org/10.1016/j.envpol.2016.06.074

    Article  CAS  Google Scholar 

  • Antunes JC, Frias JGL, Micaelo AC, Sobral P (2013) Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar Coast Shelf Sci 130:62–69

    CAS  Google Scholar 

  • Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055

    CAS  Google Scholar 

  • Atugoda T, Wijesekara H, Werellagama D et al (2020) Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: implications for vector transport in water. Environ Technol Innov 19:100971

    Google Scholar 

  • Avio CG, Gorbi S, Milan M et al (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222

    CAS  Google Scholar 

  • Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23

    CAS  Google Scholar 

  • Bakir A, O’Connor IA, Rowland SJ et al (2016) Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ Pollut 219:56–65

    CAS  Google Scholar 

  • Batel A, Borchert F, Reinwald H et al (2018) Microplastic accumulation patterns and transfer of benzo [a] pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ Pollut 235:918–930

    CAS  Google Scholar 

  • Brennecke D, Duarte B, Paiva F et al (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    CAS  Google Scholar 

  • Capriotti M, Cocci P, Bracchetti L et al (2020) The estrogenic potentiality of hydrophobic organic pollutants contaminating microplastics. In: Ocean sciences meeting 2020. AGU

    Google Scholar 

  • Carbery M, O’Connor W, Palanisami T (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409. https://doi.org/10.1016/j.envint.2018.03.007

    Article  Google Scholar 

  • Chen Q, Allgeier A, Yin D, Hollert H (2019) Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int 130:104938. https://doi.org/10.1016/j.envint.2019.104938

    Article  CAS  Google Scholar 

  • Chen C, Zou W, Chen S et al (2020) Ecological and health risk assessment of organochlorine pesticides in an urbanized river network of Shanghai, China. Environ Sci Eur 32:42. https://doi.org/10.1186/s12302-020-00322-9

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655

    CAS  Google Scholar 

  • Dafouz R, Cáceres N, Rodríguez-Gil JL et al (2018) Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Sci Total Environ 615:632–642

    CAS  Google Scholar 

  • Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227

    CAS  Google Scholar 

  • de Souza Machado AA, Kloas W, Zarfl C et al (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416

    Google Scholar 

  • Dong X, Zheng M, Qu L et al (2019) Sorption of Tonalide, Musk Xylene, Galaxolide, and Musk Ketone by microplastics of polyethylene and polyvinyl chloride. Mar Pollut Bull 144:129–133. https://doi.org/10.1016/j.marpolbul.2019.04.046

    Article  CAS  Google Scholar 

  • Fok L, Cheung PK, Tang G, Li WC (2017) Size distribution of stranded small plastic debris on the coast of Guangdong, South China. Environ Pollut 220:407–412. https://doi.org/10.1016/j.envpol.2016.09.079

    Article  CAS  Google Scholar 

  • Fonte E, Ferreira P, Guilhermino L (2016) Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation. Aquat Toxicol 180:173–185. https://doi.org/10.1016/j.aquatox.2016.09.015

    Article  CAS  Google Scholar 

  • Frias JPGL, Sobral P, Ferreira AM (2010) Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 60:1988–1992. https://doi.org/10.1016/j.marpolbul.2010.07.030

    Article  CAS  Google Scholar 

  • Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res 19:1296–1304

    CAS  Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:116. https://doi.org/10.1038/s41559-017-0116

    Article  Google Scholar 

  • Ghosh U, Kane Driscoll S, Burgess RM et al (2014) Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr Environ Assess Manag 10:210–223

    CAS  Google Scholar 

  • Godoy V, Blázquez G, Calero M et al (2019) The potential of microplastics as carriers of metals. Environ Pollut 255:113363

    CAS  Google Scholar 

  • Guilhermino L, Vieira LR, Ribeiro D et al (2018) Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Sci Total Environ 622–623:1131–1142. https://doi.org/10.1016/j.scitotenv.2017.12.020

    Article  CAS  Google Scholar 

  • Guo X, Wang J (2019) Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar Pollut Bull 149:110511

    CAS  Google Scholar 

  • Guo X, Pang J, Chen S, Jia H (2018) Sorption properties of tylosin on four different microplastics. Chemosphere 209:240–245. https://doi.org/10.1016/j.chemosphere.2018.06.100

    Article  CAS  Google Scholar 

  • Guo X, Chen C, Wang J (2019a) Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 228:300–308

    CAS  Google Scholar 

  • Guo X, Liu Y, Wang J (2019b) Sorption of sulfamethazine onto different types of microplastics: a combined experimental and molecular dynamics simulation study. Mar Pollut Bull 145: 547–554

    CAS  Google Scholar 

  • Hartmann NB, Rist S, Bodin J et al (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13:488–493

    Google Scholar 

  • He M, Sun Y, Li X, Yang Z (2006) Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). Chemosphere 65:365–374. https://doi.org/10.1016/j.chemosphere.2006.02.033

    Article  CAS  Google Scholar 

  • He P, Chen L, Shao L et al (2019) Municipal solid waste (MSW) landfill: a source of microplastics? evidence of microplastics in landfill leachate. Water Res 159:38–45. https://doi.org/10.1016/j.watres.2019.04.060

    Article  CAS  Google Scholar 

  • Heinrich P, Braunbeck T (2019) Bioavailability of microplastic-bound pollutants in vitro: the role of adsorbate lipophilicity and surfactants. Comp Biochem Physiol Part C Toxicol Pharmacol 221:59–67. https://doi.org/10.1016/j.cbpc.2019.03.012

    Article  CAS  Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A et al (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51:4714–4721

    CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32. https://doi.org/10.1016/j.marchem.2014.06.001

    Article  CAS  Google Scholar 

  • Hu J-Q, Yang S-Z, Guo L et al (2017) Microscopic investigation on the adsorption of lubrication oil on microplastics. J Mol Liq 227:351–355. https://doi.org/10.1016/j.molliq.2016.12.043

    Article  CAS  Google Scholar 

  • Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–857

    CAS  Google Scholar 

  • Jinhui S, Sudong X, Yan N et al (2019) Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Mar Pollut Bull 149:110510. https://doi.org/10.1016/j.marpolbul.2019.110510

    Article  CAS  Google Scholar 

  • Karyab H, Yunesian M, Nasseri S et al (2013) Polycyclic aromatic hydrocarbons in drinking water of Tehran, Iran. J Environ Heal Sci Eng 11:25. https://doi.org/10.1186/2052-336X-11-25

    Article  CAS  Google Scholar 

  • Kedzierski M, d’Almeida M, Magueresse A et al (2018) Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Mar Pollut Bull 127:684–694

    CAS  Google Scholar 

  • Kleinteich J, Seidensticker S, Marggrander N, Zarfl C (2018) Microplastics reduce short-term effects of environmental contaminants. Part II: polyethylene particles decrease the effect of polycyclic aromatic hydrocarbons on microorganisms. Int J Environ Res Public Health 15:287

    Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326

    CAS  Google Scholar 

  • Laing RO, Hogerzeil HV, Ross-Degnan D (2001) Ten recommendations to improve use of medicines in developing countries. Health Policy Plan 16:13–20

    CAS  Google Scholar 

  • Le Bihanic F, Clérandeau C, Cormier B et al (2020) Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar Pollut Bull 154:111059. https://doi.org/10.1016/j.marpolbul.2020.111059

    Article  CAS  Google Scholar 

  • Li J, Zhang K, Zhang H (2018) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467

    CAS  Google Scholar 

  • Lin AY-C, Yu T-H, Lin C-F (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74:131–141. https://doi.org/10.1016/j.chemosphere.2008.08.027

    Article  CAS  Google Scholar 

  • Lin W, Jiang R, Wu J et al (2019) Sorption properties of hydrophobic organic chemicals to micro-sized polystyrene particles. Sci Total Environ 690:565–572

    CAS  Google Scholar 

  • Liu G, Zhu Z, Yang Y et al (2019) Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ Pollut 246:26–33

    CAS  Google Scholar 

  • Mei W, Chen G, Bao J et al (2020) Interactions between microplastics and organic compounds in aquatic environments: a mini review. Sci Total Environ 736:139472

    CAS  Google Scholar 

  • Müller A, Becker R, Dorgerloh U et al (2018) The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ Pollut 240:639–646

    Google Scholar 

  • Ngabe B, Bidleman TF, Scott GI (2000) Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina. Sci Total Environ 255:1–9

    CAS  Google Scholar 

  • O’Donovan S, Mestre NC, Abel S et al (2018) Ecotoxicological effects of chemical contaminants adsorbed to microplastics in the clam Scrobicularia plana. Front Mar Sci 5:143

    Google Scholar 

  • O’Donovan S, Mestre NC, Abel S et al (2020) Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana. Sci Total Environ 733:139102. https://doi.org/10.1016/j.scitotenv.2020.139102

    Article  CAS  Google Scholar 

  • Pittura L, Avio CG, Giuliani ME et al (2018) Microplastics as vehicles of environmental PAHs to marine organisms: combined chemical and physical hazards to the Mediterranean mussels, Mytilus galloprovincialis. Front Mar Sci 5:103

    Google Scholar 

  • Prata JC, Lavorante BRBO, Montenegro M d CBSM, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

    Article  CAS  Google Scholar 

  • Razanajatovo RM, Ding J, Zhang S et al (2018) Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar Pollut Bull 136:516–523. https://doi.org/10.1016/j.marpolbul.2018.09.048

    Article  CAS  Google Scholar 

  • Rochman CM, Hoh E, Hentschel BT, Kaye S (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol 47:1646–1654

    CAS  Google Scholar 

  • Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9:e85433

    Google Scholar 

  • Seidensticker S, Zarfl C, Cirpka OA et al (2017) Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved substances. Environ Sci Technol 51:12254–12263

    CAS  Google Scholar 

  • Shen X-C, Li D-C, Sima X-F et al (2018) The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environ Res 166:377–383. https://doi.org/10.1016/j.envres.2018.06.034

    Article  CAS  Google Scholar 

  • Syberg K, Nielsen A, Khan FR et al (2017) Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana). J Toxicol Environ Health Part A 80:1369–1371. https://doi.org/10.1080/15287394.2017.1385046

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Chipman DW et al (2014) Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar Chem 164:95–125

    CAS  Google Scholar 

  • Tang S, Lin L, Wang X et al (2020) Pb(II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. J Hazard Mater 386:121960. https://doi.org/10.1016/j.jhazmat.2019.121960

    Article  CAS  Google Scholar 

  • Town RM, van Leeuwen HP, Blust R (2018) Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media. Front Chem 6:627

    CAS  Google Scholar 

  • Turner A, Holmes LA (2015) Adsorption of trace metals by microplastic pellets in fresh water. Environ Chem 12:600–610

    CAS  Google Scholar 

  • Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70

    Google Scholar 

  • Velez JFM, Shashoua Y, Syberg K, Khan FR (2018) Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies. Chemosphere 210:359–365

    CAS  Google Scholar 

  • Vogelsang C, Grung M, Jantsch TG et al (2006) Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Res 40:3559–3570

    CAS  Google Scholar 

  • Vrana B, Mills G, Greenwood R et al (2005) Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water. J Environ Monit 7:612–620

    CAS  Google Scholar 

  • Wang F, Shih KM, Li XY (2015) The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 119:841–847. https://doi.org/10.1016/j.chemosphere.2014.08.047

    Article  CAS  Google Scholar 

  • Wang Z, Chen M, Zhang L et al (2018) Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China. Sci Total Environ 628–629:1617–1626. https://doi.org/10.1016/j.scitotenv.2018.02.146

    Article  CAS  Google Scholar 

  • Wang F, Zhang M, Sha W et al (2020a) Sorption behavior and mechanisms of organic contaminants to Nano and Microplastics. Molecules 25:1827

    CAS  Google Scholar 

  • Wang W, Qi M, Jia X et al (2020b) Differential adsorption of zwitterionic PPCPs by multifunctional resins: the influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241:125023

    CAS  Google Scholar 

  • Wu C, Zhang K, Huang X, Liu J (2016) Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ Sci Pollut Res 23:8819–8826

    CAS  Google Scholar 

  • Wu J, Xu P, Chen Q et al (2020a) Effects of polymer aging on sorption of 2,2′,4,4′-tetrabromodiphenyl ether by polystyrene microplastics. Chemosphere 253:126706. https://doi.org/10.1016/j.chemosphere.2020.126706

    Article  CAS  Google Scholar 

  • Wu X, Liu P, Huang H, Gao S (2020b) Adsorption of triclosan onto different aged polypropylene microplastics: critical effect of cations. Sci Total Environ 717:137033

    CAS  Google Scholar 

  • Xu B, Liu F, Brookes PC, Xu J (2018) Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ Pollut 240:87–94. https://doi.org/10.1016/j.envpol.2018.04.113

    Article  CAS  Google Scholar 

  • Yang Y, Ok YS, Kim K-H et al (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596:303–320

    Google Scholar 

  • Yu F, Yang C, Zhu Z et al (2019) Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci Total Environ 694:133643

    CAS  Google Scholar 

  • Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60:1810–1814

    CAS  Google Scholar 

  • Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387

    CAS  Google Scholar 

  • Zhan Z, Wang J, Peng J et al (2016) Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: a case study of polypropylene. Mar Pollut Bull 110:559–563. https://doi.org/10.1016/j.marpolbul.2016.05.036

    Article  CAS  Google Scholar 

  • Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004

    Article  CAS  Google Scholar 

  • Zhang B, Yang X, Chen L et al (2020a) Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. J Chem Technol Biotechnol 95:2052

    CAS  Google Scholar 

  • Zhang S, Han B, Sun Y, Wang F (2020b) Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 388:121775

    CAS  Google Scholar 

  • Zhang W, Zhang L, Hua T et al (2020c) The mechanism for adsorption of Cr(VI) ions by PE microplastics in ternary system of natural water environment. Environ Pollut 257:113440. https://doi.org/10.1016/j.envpol.2019.113440

    Article  CAS  Google Scholar 

  • Zhou R, Lu G, Yan Z et al (2020) A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. Sci Total Environ 732:139222

    CAS  Google Scholar 

  • Ziccardi LM, Edgington A, Hentz K et al (2016) Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ Toxicol Chem 35:1667–1676

    CAS  Google Scholar 

Download references

Acknowledgements

The authors hereby acknowledge Early Career Women Fellowship from the Organization for Women Scientists of Developing Countries, Italy, through a grant from UNESCO and the International Development Research Centre, Ottawa, Canada. The views expressed herein do not necessarily represent those of UNESCO, IDRC, or its Board of Governors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramanayaka, S., Hettithanthri, O., Sandanayake, S., Vithanage, M. (2022). Ecological Effects of Chemical Contaminants Adsorbed to Microplastics. In: Rocha-Santos, T., Costa, M.F., Mouneyrac, C. (eds) Handbook of Microplastics in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_50

Download citation

Publish with us

Policies and ethics