Skip to main content

Ocean Energy

  • Living reference work entry
  • First Online:
The Palgrave Handbook of Global Sustainability

Abstract

Ocean energy is one of several viable alternatives for generating electricity in coastal regions. Given that the world’s coasts represent <15% of the planet’s continental surface, with half of the world’s cities of over 100,000 inhabitants found here, ocean energy is particularly attractive. Indeed, the potential population that could benefit from Marine Renewable Energy (MRE) is substantial. Harvesting energy can take place using the movement of water through waves, currents, tides, and through differences in temperature and salinity. Various MRE technologies are being developed and tested around the world: some are floating devices, others are submerged or anchored to the seabed. Along with the development of new technologies, the impacts of MRE on the environment should be monitored, mitigated, and kept at a minimum to reduce risk-related uncertainties. At the same time, it is vital to consider the perception of these new technologies and their acceptance locally before installing the devices. This chapter examines ocean energy from different viewpoints. First, a brief description of how different ocean energy devices work is given. There follows a revision of the potential environmental impacts these devices may have. In the third section the need to evaluate the social perception and acceptance of the new technologies regarding the possibility of installing MRE devices is highlighted. The chapter ends with a brief description of how MRE may help in the achievement of the United Nations Sustainable Development goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barragán JM, de Andrés M (2015) Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast Manag 114:11–20

    Article  Google Scholar 

  • Broadhurst M, Orme CDL (2014) Spatial and temporal benthic species assemblage responses with a deployed marine tidal energy device: a small scaled study. Mar Environ Res 99:76–84

    Article  Google Scholar 

  • Browning MS, Lenox CS (2020) Contribution of offshore wind to the power grid: US air quality implications. Appl Energy 276:115474

    Article  Google Scholar 

  • Caballero S (2013) Cancelan proyecto eólico en Cozume. https://www.proceso.com.mx/336891/cancelan-proyecto-eolico-en-cozumel. 21 Mar 2013

  • CEMIE-Océano (2022) Infografías. https://cemieoceano.mx/infografias.html. Accessed 10 Apr 2022

  • González MI, Estévez B (2005) Participación, comunicación y negociación en conflictos ambientales: Energía eólica marina en el mar de Trafalgar. Arbor 181(715):377–392

    Article  Google Scholar 

  • Hansen LK, Hammarlund K, Sorensen H, Christensen L (2003) Public acceptance of wave energy. In: Proceedings from the 5 European wave energy conference. University College, Dublin

    Google Scholar 

  • Huckerby J, Jeffrey H, de Andres A, Finlay L (2016) An international vision for ocean energy. Version III. www.ocean-energy-systems.org: Ocean Energy Systems Technology Collaboration Programme

  • IEA, IRENA, UNSD, WB, WHO (2019) Tracking SDG 7: the energy progress report 2019. International Bank for Reconstruction and Development/The World Bank, Washington, DC

    Google Scholar 

  • IEA-OES (2022) Annual report: an overview of ocean energy activities in 2021. www.ocean-energy-systems.org. Ocean Energy Systems Technology Collaboration Programme

  • IRENA (2020) Innovation outlook: ocean energy technologies. International Renewable Energy Agency, Abu Dhabi

    Google Scholar 

  • Lee J, Zhao F (2021) Global wind report 2021. Global Wind Energy Council, p 75

    Google Scholar 

  • Martínez ML, Vázquez G, Pérez-Maqueo O, Silva R, Moreno-Casasola P, Mendoza-González G, López-Portillo J, MacGregor-Fors I, Heckel G, Hernández-Santana JR, García-Franco JG, Castillo-Campos G, Lara-Domínguez AL (2021) A systemic view of potential environmental impacts of ocean energy production. Renew Sust Energ Rev 149:111332. https://doi.org/10.1016/j.rser.2021.111332

    Article  Google Scholar 

  • Mendoza E, Lithgow D, Flores P, Felix A, Simas T, Silva R (2019) A framework to evaluate the environmental impact of OCEAN energy devices. Renew Sust Energ Rev 112:440–449. https://doi.org/10.1016/j.rser.2019.05.060

    Article  Google Scholar 

  • MéxicoAmbiental (2018) Investigadores de la UNAM, revelan más de 500 conflictos ambientales en México y construye mapa que los georeferencia y categoriza. http://www.mexicoambiental.com/investigadores-de-la-unam-revelan-mas-de-500-conflictos-ambientales-en-mexico-y-construye-mapa-que-los-georeferencia-y-categoriza/. Accessed 1 Jan 2019

  • Milton K (1996) Environmentalism and cultural theory: exploring the role of anthropology in environmental discourse. Routledge, London. https://doi.org/10.4324/9780203205440

    Book  Google Scholar 

  • Pine MK, Schmitt P, Culloch RM, Lieber L, Kregting LT (2019) Providing ecological context to anthropogenic subsea noise: assessing listening space reductions of marine mammals from tidal energy devices. Renew Sust Energ Rev 103:49–57

    Article  Google Scholar 

  • Posner AJ, O’Sullivan K, Murphy J (2013) Economic and environmental impact appraisal of commercial scale offshore renewable energy installations on the west coast of Ireland. J Coast Res 65(10065):1639–1644

    Article  Google Scholar 

  • Raffestin C (2012) Space, territory, and territoriality. Environ Plann D: Soc Space 30(1):121–141

    Article  Google Scholar 

  • REE (2020) Red Eléctrica de España. Las energías renovables en el sistema eléctrico español. https://www.ree.es/sites/default/files/publication/2021/06/downloadable/informe_renovables_2020_0.pdf

  • Scheidel A, Del Bene D, Liu J, Navas G, Mingorría S, Demaria F, Avila S, Roy B, Ertör I, Temper L (2020) Environmental conflicts and defenders: a global overview. Glob Environ Chang 63:102104

    Article  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25(7):419–427

    Article  Google Scholar 

  • Stevens AW, Lacy JR (2012) The influence of wave energy and sediment transport on seagrass distribution. Estuar Coasts 35(1):92–108

    Article  Google Scholar 

  • Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504(7478):79–83

    Article  Google Scholar 

  • Toledo VM, Garrido D, Barrera-Basols N (2013) Conflictos socioambientales, resistencias ciudadanas y violencia neoliberal en México. Ecol Polít 46:115–124

    Google Scholar 

  • Virtanen EA, Lappalainen J, Nurmi M, Viitasalo M, Tikanmäki M, Heinonen J, Atlaskin E, Kallasvuo M, Tikkanen H, Moilanen A (2022) Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design. Renew Sust Energ Rev 158:112087

    Article  Google Scholar 

  • Waggitt J, Scott B (2014) Using a spatial overlap approach to estimate the risk of collisions between deep diving seabirds and tidal stream turbines: a review of potential methods and approaches. Mar Policy 44:90–97

    Article  Google Scholar 

  • Walsh J, Bashir I, Thies PR, Johanning L, Blondel P (2015) Acoustic emission health monitoring of marine renewables: illustration with a wave energy converter in Falmouth Bay (UK). In: OCEANS 2015-Genova, 2015. IEEE, pp 1–7

    Google Scholar 

  • Westgate MJ (2019) Revtools: an R package to support article screening for evidence synthesis. Res Synth Methods 10(4):606–614

    Article  Google Scholar 

  • Williamson BJ, Fraser S, Blondel P, Bell PS, Waggitt JJ, Scott BE (2017) Multisensor acoustic tracking of fish and seabird behavior around tidal turbine structures in Scotland. IEEE J Ocean Eng 42(4):948–965

    Article  Google Scholar 

  • Wolsink M (2000) Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support. Renew Energy 21(1):49–64

    Article  Google Scholar 

  • World Bank (2018) More people have access to electricity than ever before, but world is falling short of sustainable energy goals. https://www.worldbank.org/en/news/press-release/2019/05/22/tracking-sdg7-the-energy-progress-report-2019#:~:text=Renewables%20accounted%20for%2017.5%25%20of,sustainable%2C%20focusing%20on%20modern%20uses. Accessed 15 Apr 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luisa Martínez .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martínez, M.L., Chávez, V., De la Cruz, V., Pérez-Maqueo, O., Wojtarowski, A., Silva, R. (2022). Ocean Energy. In: The Palgrave Handbook of Global Sustainability. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-38948-2_197-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38948-2_197-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-38948-2

  • Online ISBN: 978-3-030-38948-2

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics