Skip to main content

Abstract

The capabilities of modern computers and mathematical software are entirely sufficient for the numerical solution of 2D PDEs. Two-dimensional problems naturally arise when the Fourier method is applied to a three-dimensional boundary value problem for PDEs with coefficients independent of one variable. Such specially constructed solvers can be used as preconditioners for iterative solvers of boundary value problems for PDEs with general case coefficients. In this paper, we develop the outlined above idea for the numerical solution of the Helmholtz equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    D is assumed to contain the origin (0, 0, 0).

  2. 2.

    The density is constant and excluded from further considerations.

References

  1. Belonosov, M., Dmitriev, M., Kostin, V., Neklyudov, D., Tcheverda, V.: An iterative solver for the 3D Helmholtz equation. J. Comput. Phys. 345, 330–344 (2017). https://doi.org/10.1016/j.jcp.2017.05.026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Belonosov, M., Kostin, V., Neklyudov, D., Tcheverda, V.: 3D numerical simulation of elastic waves with a frequency-domain iterative solver. Geophysics 83(6), T333–T344 (2018). https://doi.org/10.1190/geo2017-0710.1

    Article  ADS  Google Scholar 

  3. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/

  5. Erlangga, Y.A., Herrmann, F.J.: Full-waveform inversion with Gauss–Newton–Krylov method. In: 79th SEG Annual Meeting Expanded Abstracts, pp. 2357–2361. SEG (2009)

    Google Scholar 

  6. Erlangga, Y.A., Nabben, R.: On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. Electron. Trans. Numer. Anal. 31, 403–424 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Intel® Math Kernel Library (Intel® MKL). https://software.intel.com/en-us/intel-mkl

  8. Kostin, V., Solovyev, S., Bakulin, A., Dmitriev, M.: Direct frequency-domain 3D acoustic solver with intermediate data compression benchmarked against time-domain modeling for FWI applications. Geophysics 84(4), T207–T219 (2019). https://doi.org/10.1190/geo2018-0465.1

    Article  ADS  Google Scholar 

  9. Mulder, W.A., Plessix, R.E.: How to choose a subset of frequencies in frequency-domain finite-difference migration. Geophys. J. Int. 158(3), 801–812 (2004). https://doi.org/10.1111/j.1365-246X.2004.02336.x

    Article  ADS  Google Scholar 

  10. Oosterlee, C.W., Vuik, C., Mulder, W.A., Plessix, R.-E.: Shifted-Laplacian preconditioners for heterogeneous Helmholtz problems. In: Advanced Computational Methods in Science and Engineering, pp. 21–46. Springer (2010). https://doi.org/10.1007/978-3-642-03344-5_2

  11. Plessix, R.E.: Three-dimensional frequency-domain full-waveform inversion with an iterative solver. Geophysics 74, WCC149—WCC157 (2009). https://doi.org/10.1190/1.3211198

  12. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003.bm

    Book  MATH  Google Scholar 

  13. Singer, I., Turkel, E.: A perfectly matched layer for the Helmholtz equation in a semi-infinite strip. J. Comput. Phys. 201, 439–465 (2004). https://doi.org/10.1016/j.jcp.2004.06.010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Vainberg, B.: Principles of radiation, vanishing attenuation and limit amplitude in the general theory of partial differential equations. Usp. Mat. Nauk 21, 115–194 (1966). (in Russian)

    Google Scholar 

  15. Virieux, J., Operto, S., Ben-Hadj-Ali, H., Brosssier, R., Etienne, V., Sourber, F., Guraud, L., Haidar, A.: Seismic wave modeling for seismic imaging. Lead. Edge 28(5), 538–544 (2009). https://doi.org/10.1190/1.3124928

    Article  Google Scholar 

  16. Wang, S., Li, X., Xia, J., Situ, Y., De Hoop, M.: Efficient scalable algorithms for solving dense linear systems with hierarchically semiseparable structures. SIAM J. Sci. Comput. 35(6), C519–C544 (2013). https://doi.org/10.1137/110848062

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The main results of this paper were obtained by Victor Kostin during his stay at the Tel-Aviv University in the period 03.11–04.10 of 2018. Victor Kostin thanks the Russian Science Foundation for the financial support of the trip to Tel-Aviv University under the project 17-17-01128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kostin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klyuchinskiy, D., Kostin, V., Landa, E. (2020). New Efficient Preconditioner for Helmholtz Equation. In: Demidenko, G., Romenski, E., Toro, E., Dumbser, M. (eds) Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy. Springer, Cham. https://doi.org/10.1007/978-3-030-38870-6_32

Download citation

Publish with us

Policies and ethics