Skip to main content

Immunogenic Cell Death Driven by Radiation—Impact on the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 180))

Abstract

Immunogenic cell death (ICD) is a particular form of cell death that can initiate adaptive immunity against antigens expressed by dying cells in the absence of exogenous adjuvants. This implies that cells undergoing ICD not only express antigens that are not covered by thymic tolerance, but also deliver adjuvant-like signals that enable the recruitment and maturation of antigen-presenting cells toward an immunostimulatory phenotype, culminating with robust cross-priming of antigen-specific CD8+ T cells. Such damage-associated molecular patterns (DAMPs), which encompass cellular proteins, small metabolites and cytokines, are emitted in a spatiotemporally defined manner in the context of failing adaptation to stress. Radiation therapy (RT) is a bona fide inducer of ICD, at least when employed according to specific doses and fractionation schedules. Here, we discuss the mechanisms whereby DAMPs emitted by cancer cells undergoing RT-driven ICD alter the functional configuration of the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  2. Green DR et al (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galluzzi L et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh R et al (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16:329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yatim N et al (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17:262–275

    Article  CAS  PubMed  Google Scholar 

  8. Galluzzi L et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi L et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111

    Article  CAS  PubMed  Google Scholar 

  10. Casares N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kepp O et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3:e955691

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bloy N et al (2017) Immunogenic stress and death of cancer cells: Contribution of antigenicity versus adjuvanticity to immunosurveillance. Immunol Rev 280:165–174

    Article  CAS  PubMed  Google Scholar 

  14. Krysko DV et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  PubMed  Google Scholar 

  15. Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  16. Tesniere A et al (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20:504–511

    Article  CAS  PubMed  Google Scholar 

  17. Galluzzi L et al (2018) Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 19:731–745

    Article  CAS  PubMed  Google Scholar 

  18. Vanpouille-Box C et al (2018) Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34:361–378

    Article  CAS  PubMed  Google Scholar 

  19. Dudek AM et al (2013) Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 24:319–333

    Article  CAS  PubMed  Google Scholar 

  20. Adkins I et al (2014) Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 3:e968434

    Article  PubMed  Google Scholar 

  21. Bezu L et al (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187

    PubMed  PubMed Central  Google Scholar 

  22. Rao S et al (2019) Cancer immunosurveillance by T cells. Int Rev Cell Mol Biol 342:149–173

    Article  PubMed  Google Scholar 

  23. Obeid M et al (2007) Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 14:1848–1850

    Article  CAS  PubMed  Google Scholar 

  24. Golden EB et al (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vanpouille-Box C et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vanpouille-Box C et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75:2232–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wennerberg E et al (2017) Immune recognition of irradiated cancer cells. Immunol Rev 280:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barker HE et al (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15:409–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69:169–181

    Article  CAS  PubMed  Google Scholar 

  30. Molinari M et al (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13:125–135

    Article  CAS  PubMed  Google Scholar 

  31. Panaretakis T et al (2008) The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15:1499–1509

    Article  CAS  PubMed  Google Scholar 

  32. Fucikova J et al (2011) Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 71:4821–4833

    Article  CAS  PubMed  Google Scholar 

  33. Spisek R et al (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng M et al (2018) Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 9:3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gardai SJ et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  36. Garg AD et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31:1062–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salimu J et al (2015) Cross-presentation of the oncofetal tumor antigen 5T4 from irradiated prostate cancer cells—a key role for heat-shock protein 70 and receptor CD91. Cancer Immunol Res 3:678–688

    Article  CAS  PubMed  Google Scholar 

  38. Panaretakis T et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28:578–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fadok VA et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  CAS  PubMed  Google Scholar 

  40. Li MO et al (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–1563

    Article  CAS  PubMed  Google Scholar 

  41. Osman R et al (2017) Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells. Front Immunol 8:1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martins I et al (2010) Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci 1209:77–82

    Article  CAS  PubMed  Google Scholar 

  43. Vanden Berghe T et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    Article  CAS  PubMed  Google Scholar 

  44. Chao MP (2010) Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2, 63ra94

    Google Scholar 

  45. Iribarren K et al (2019) Anticancer effects of anti-CD47 immunotherapy in vivo. Oncoimmunology 8:1550619

    Article  PubMed  Google Scholar 

  46. Fucikova J et al (2016) Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 128:3113–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fucikova J et al (2016) Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res 76:1746–1756

    Article  CAS  PubMed  Google Scholar 

  48. Stoll G et al (2016) Calreticulin expression: interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. Oncoimmunology 5:e1177692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu WM et al (2005) Calreticulin expression in neuroblastoma—a novel independent prognostic factor. Ann Oncol 16:314–321

    Article  CAS  PubMed  Google Scholar 

  50. Majeti R et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagahara M et al (2010) Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood predicts recurrence in breast cancer patients. Clin Cancer Res 16:4625–4635

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki S et al (2012) CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 28:465–472

    Article  CAS  PubMed  Google Scholar 

  53. Yoshida K et al (2015) CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med 4:1322–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gameiro SR et al (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5:403–416

    Article  PubMed  Google Scholar 

  55. Yi L et al (2017) Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays. PLoS ONE 12:e0182671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Molica S et al (2016) Serum levels of soluble calreticulin predict for time to first treatment in early chronic lymphocytic leukaemia. Br J Haematol 175:983–985

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Soto A et al (2017) Control of metastasis by NK cells. Cancer Cell 32:135–154

    Article  CAS  PubMed  Google Scholar 

  58. Lopez-Soto A et al (2017) Soluble NKG2D ligands limit the efficacy of immune checkpoint blockade. Oncoimmunology 6:e1346766

    Article  PubMed  PubMed Central  Google Scholar 

  59. Di Virgilio F et al (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18:601–618

    Article  CAS  PubMed  Google Scholar 

  60. Giuliani AL et al (2019) Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 205:16–24

    Article  CAS  PubMed  Google Scholar 

  61. Vijayan D et al (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17:709–724

    Article  CAS  PubMed  Google Scholar 

  62. Martins I et al (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–3728

    Article  CAS  PubMed  Google Scholar 

  63. Aymeric L et al (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70:855–858

    Article  CAS  PubMed  Google Scholar 

  64. Ma Y et al (2013) Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38:729–741

    Article  CAS  PubMed  Google Scholar 

  65. Elliott MR et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  CAS  PubMed  Google Scholar 

  67. Zitvogel L et al (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13:343–351

    Article  CAS  PubMed  Google Scholar 

  68. Kepp O et al (2011) Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 12:199–200

    Article  CAS  PubMed  Google Scholar 

  69. Martins I et al (2014) Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 21:79–91

    Article  CAS  PubMed  Google Scholar 

  70. Michaud M et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    Article  CAS  PubMed  Google Scholar 

  71. Galluzzi L et al (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ko A et al (2014) Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 21:92–99

    Article  CAS  PubMed  Google Scholar 

  73. Garg AD et al (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9:1292–1307

    Article  CAS  PubMed  Google Scholar 

  74. Garg AD, Agostinis P (2014) ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 13:474–487

    Article  CAS  PubMed  Google Scholar 

  75. Fucikova J et al (2015) Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 6:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dardano A et al (2009) 1513A>C polymorphism in the P2X7 receptor gene in patients with papillary thyroid cancer: correlation with histological variants and clinical parameters. J Clin Endocrinol Metab 94:695–698

    Article  CAS  PubMed  Google Scholar 

  77. Aliagas E et al (2014) High expression of ecto-nucleotidases CD39 and CD73 in human endometrial tumors. Mediat Inflamm 2014:509027

    Article  CAS  Google Scholar 

  78. Pulte D et al (2011) CD39 expression on T lymphocytes correlates with severity of disease in patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 11:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perry C et al (2012) Increased CD39 expression on CD4(+) T lymphocytes has clinical and prognostic significance in chronic lymphocytic leukemia. Ann Hematol 91:1271–1279

    Article  CAS  PubMed  Google Scholar 

  80. Xu S et al (2013) Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol 15:1160–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jin H et al (2018) P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol 53:1953–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin S et al (2017) An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells. Autophagy 13:1512–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scaffidi P et al (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  84. Martins I et al (2013) Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol 1004:43–56

    Article  CAS  PubMed  Google Scholar 

  85. Schiraldi M et al (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dumitriu IE et al (2007) The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 81:84–91

    Article  CAS  PubMed  Google Scholar 

  87. Venereau E et al (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rovere-Querini P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gay NJ et al (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14:546–558

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell JP, Carmody RJ (2018) NF-kappaB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 335:41–84

    Article  CAS  PubMed  Google Scholar 

  91. Shiratsuchi A et al (2004) Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol 172:2039–2047

    Article  CAS  PubMed  Google Scholar 

  92. Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  93. Apetoh L et al (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59

    Article  CAS  PubMed  Google Scholar 

  94. Yamazaki T et al (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78

    Article  CAS  PubMed  Google Scholar 

  95. Suzuki Y et al (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72:3967–3976

    Article  CAS  PubMed  Google Scholar 

  96. Bao G et al (2010) Prognostic value of HMGB1 overexpression in resectable gastric adenocarcinomas. World J Surg Oncol 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang GL et al (2012) Increased expression of HMGB1 is associated with poor prognosis in human bladder cancer. J Surg Oncol 106:57–61

    Article  CAS  PubMed  Google Scholar 

  98. Wu D et al (2008) Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol 216:167–175

    Article  CAS  PubMed  Google Scholar 

  99. Yao X et al (2010) Overexpression of high-mobility group box 1 correlates with tumor progression and poor prognosis in human colorectal carcinoma. J Cancer Res Clin Oncol 136:677–684

    Article  CAS  PubMed  Google Scholar 

  100. Liu F et al (2012) High expression of high mobility group box 1 (hmgb1) predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. J Transl Med 10:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao J et al (2014) The association of HMGB1 gene with the prognosis of HCC. PLoS ONE 9:e89097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu Y et al (2010) Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer 46:3007–3015

    Article  CAS  PubMed  Google Scholar 

  103. Zhao CB et al (2014) Co-expression of RAGE and HMGB1 is associated with cancer progression and poor patient outcome of prostate cancer. Am J Cancer Res 4:369–377

    PubMed  PubMed Central  Google Scholar 

  104. Livesey KM et al (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72:1996–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tang D et al (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bergmann C et al (2011) Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas. J Transl Med 9:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tittarelli A et al (2012) Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother 61:2067–2077

    Article  CAS  PubMed  Google Scholar 

  108. Gast A et al (2011) Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS ONE 6:e24370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim KH et al (2012) Expression and significance of the TLR4/MyD88 signaling pathway in ovarian epithelial cancers. World J Surg Oncol 10:193

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang EL et al (2010) High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 102:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aaes TL et al (2016) Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 15:274–287

    Article  CAS  PubMed  Google Scholar 

  112. Yatim N et al (2015) RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science 350:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Deng L et al (2014) STING-dependent cytosolic dna sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang W et al (2019) Upregulation of PD-L1 via HMGB1-activated IRF3 and NF-kappaB contributes to UV radiation-induced immune suppression. Cancer Res

    Google Scholar 

  115. McNab F et al (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dubois H et al (2019) Nucleic acid induced interferon and inflammasome responses in regulating host defense to gastrointestinal viruses. Int Rev Cell Mol Biol 345:137–171

    Article  PubMed  Google Scholar 

  117. Sistigu A et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301–1309

    Article  CAS  PubMed  Google Scholar 

  118. Goswami R, Kaplan MH (2017) STAT transcription factors in T cell control of health and disease. Int Rev Cell Mol Biol 331:123–180

    Article  CAS  PubMed  Google Scholar 

  119. Zitvogel L et al (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15:405–414

    Article  CAS  PubMed  Google Scholar 

  120. Papewalis C et al (2008) IFN-alpha skews monocytes into CD56 + -expressing dendritic cells with potent functional activities in vitro and in vivo. J Immunol 180:1462–1470

    Article  CAS  PubMed  Google Scholar 

  121. Guillot B et al (2005) The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-alpha treatment. Br J Dermatol 152:690–696

    Article  CAS  PubMed  Google Scholar 

  122. Ilander M et al (2014) Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-alpha monotherapy. PLoS ONE 9:e87794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Spranger S et al (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:711–723.e714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mackenzie KJ et al (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dou Z et al (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Woo SR et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Galluzzi L et al (2018) SnapShot: CGAS-STING Signaling. Cell 173:276–276.e271

    Article  CAS  PubMed  Google Scholar 

  128. Medler T et al (2019) Activating the nucleic acid-sensing machinery for anticancer immunity. Int Rev Cell Mol Biol 344:173–214

    Article  PubMed  Google Scholar 

  129. Diamond JM et al (2018) Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 6:910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Diamond MS et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fuertes MB et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208:2005–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fallarino F, Gajewski TF (1999) Cutting edge: differentiation of antitumor CTL in vivo requires host expression of Stat1. J Immunol 163:4109–4113

    CAS  PubMed  Google Scholar 

  133. Burnette BC et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yuan MM et al (2015) TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma and predicts prognosis. BMC Cancer 15:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chew V et al (2012) Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst 104:1796–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hsu WM et al (2013) Toll-like receptor 3 expression inhibits cell invasion and migration and predicts a favorable prognosis in neuroblastoma. Cancer Lett 336:338–346

    Article  CAS  PubMed  Google Scholar 

  137. Salaun B et al (2011) TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res 71:1607–1614

    Article  CAS  PubMed  Google Scholar 

  138. Fujita M et al (2010) Role of type 1 IFNs in antiglioma immunosurveillance—using mouse studies to guide examination of novel prognostic markers in humans. Clin Cancer Res 16:3409–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bidwell BN et al (2012) Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18:1224–1231

    Article  CAS  PubMed  Google Scholar 

  140. Weichselbaum RR et al (2008) An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A 105:18490–18495

    Article  PubMed  PubMed Central  Google Scholar 

  141. Erdal E et al (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 31:353–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Benci JL et al (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(1540–1554):e1512

    Google Scholar 

  143. Garg AD et al (2017) Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 24:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Galluzzi L et al (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788

    Article  CAS  PubMed  Google Scholar 

  145. Vacchelli E et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350:972–978

    Article  CAS  PubMed  Google Scholar 

  146. Formenti SC (2017) Optimizing dose per fraction: a new chapter in the story of the abscopal effect? Int J Radiat Oncol Biol Phys 99:677–679

    Article  PubMed  Google Scholar 

  147. Deutsch E et al (2019) Optimizing efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol (in press)

    Google Scholar 

  148. Ko EC et al (2018) The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin Cancer Res 24:5792–5806

    Article  PubMed  Google Scholar 

  149. Ko EC, Formenti SC (2018) Radiotherapy and checkpoint inhibitors: a winning new combination? Ther Adv Med Oncol 10:1758835918768240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SD is supported by NCI R01CA198533 and R01CA201246, and by grants from the Breast Cancer Research Foundation and The Chemotherapy Foundation. LG lab is supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476P1), by the 2019 Laura Ziskin Prize in Translational Research (#ZP-6177, PI: Formenti) from the Stand Up to Cancer (SU2C), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell Medicine (New York, US), by a Rapid Response Grant from the Functional Genomics Initiative (New York, US), by industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, US), and by donations from Phosplatin (New York, US), the Luke Heller TECPR2 Foundation (Boston, US) and Sotio a.s. (Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Galluzzi .

Editor information

Editors and Affiliations

Ethics declarations

TY and CVB have no relevant conflicts of interest to disclose. SD has research funding from Lytix Biopharma and Nanobiotix, is a member of the Scientific Advisory Board of Lytix Biopharma, and has received honorarium for consulting from EMD Serono and Mersana Therapeutics. LG received consulting fees from OmniSEQ, Astra Zeneca, Inzen and the Luke Heller TECPR2 Foundation, and he is member of the Scientific Advisory Committee of Boehringer Ingelheim, The Longevity Labs and OmniSEQ.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamazaki, T., Vanpouille-Box, C., Demaria, S., Galluzzi, L. (2020). Immunogenic Cell Death Driven by Radiation—Impact on the Tumor Microenvironment. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics