Skip to main content

Numerical Investigation of the Deteriorated Heat Transfer Phenomenon for Supercritical Water Flows in Vertical Circular Tubes

  • Conference paper
  • First Online:
Complementary Resources for Tomorrow (EAS 2019)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 324 Accesses

Abstract

The present paper is aimed at the in-depth thermal-hydraulic analysis of supercritical water flow at various operating conditions in vertical circular tubes. Computational fluid dramatics model using two turbulence models, Reynolds Stress Model and \( {\text{k}}\,{-}\,\upomega \) SST model, have been used for the analysis in this paper. Three experimental cases, which are operated at various working regimes, are chosen for the detailed analysis of deteriorated heat transfer and normal heat transfer cases. The studies are carried out for the turbulent properties and velocity profiles and their effects on the heat transfer in the vertical circular tubes. It is found that the sharp increase in the wall temperature vanishes if the gravity is neglected. Hence, it can be concluded that buoyancy plays a dominant role in deteriorating the heat transfer for the cases of a low mass flux condition. Besides, the turbulence is found to be suppressed severely for the deteriorated heat transfer and is one of the reasons for the deterioration in heat transfer. Both turbulent models predicted the suppression phenomenon. However, compared with the previous direct numerical simulation studies, which showed two peaks in the turbulent kinetic energy profile, the \( {\text{k}}\,{-}\,\upomega \) SST model fails to predict the proper turbulent kinetic energy profile in the near wall region, which showed only one peak or no peak for the turbulent kinetic energy in the whole flow region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C p :

Specific heat, \( {\text{J}}/{\text{kg}} \cdot {\text{K}} \)

D :

Diameter of a tube, m

g :

Gravitational acceleration, m/s2

G :

Mass flux, kg/m2 s

k :

Turbulence kinetic energy, m2/s2

L :

Length, m

L h :

Heated length, m

p :

Pressure, Pa

q :

Heat flux, W/m2

r :

Distance from centre of the tube, m

r :

Non-dimensional radial location, \( r^{ * } = \frac{r}{D/2} \)

T :

Temperature, oC

u :

Velocity, m/s

V :

Axial velocity, m/s

V 0 :

Axial velocity at the centre of a cross-section of the tube, m/s

y :

Distance from the wall, m

y + :

Non-dimensional distance from the wall, \( y^{ + } = \frac{{u_{\tau } y}}{v} \)

z :

Axial location, m

z :

Non-dimensional axial location, \( z^{ * } = \frac{z}{L} \)

ε :

Turbulence kinetic energy dissipation, m2/s3

µ :

Dynamic viscosity, \( {\text{Pa}} \cdot {\text{s}} \)

ν:

Kinematic viscosity, m2/s

ρ :

Density of a fluid, kg/m3

ω :

Specific dissipation rate, 1/s

φ :

Dissipation function

dht:

Deteriorated heat transfer

in:

Inlet

m:

Mean

pc:

Pseudo-critical

t:

Turbulent

w:

Wall

BWR:

Boiling Water Reactor

CFD:

Computational Fluid Dynamics

DHT:

Deteriorated Heat Transfer

DHTZ:

Deteriorated Heat Transfer Zone

GIF:

Generation IV International Forum

NHT:

Normal Heat Transfer

PCR:

Pseudo Critical Region

PWR:

Pressurized Water Reactor

RSM:

Reynold Stress Model

SCWR:

Supercritical Water-Cooled Reactor

SST:

Shear Stress Transport

TKE:

Turbulence Kinetic Energy

References

  1. ANSYS Inc.: 14.0 ANSYS FLUENT Theory Guide (2011)

    Google Scholar 

  2. Bae, J.H., Jung, Y.Y., Haecheon, C.: Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17(10), 105104 (2005)

    Article  Google Scholar 

  3. Bellinghausen, R., Renz, U.: Heat transfer inside vertical tubes. Chem. Eng. Process. 28(3), 183–186 (1990)

    Article  Google Scholar 

  4. Cheng, X., Kuang, B., Yang, Y.H.: Numerical analysis of heat transfer in supercritical water cooled flow channels. Nucl. Eng. Des. 237(3), 240–252 (2007)

    Article  Google Scholar 

  5. Churkin, A, Bilbao, S., Yamada, K.: Analysis of the IAEA benchmark exercise on steady state flow in a heated pipe with supercritical water. In: Proceedings of ICAPP, pp. 139–145 (2011)

    Google Scholar 

  6. Desissler, R.: Heat transfer and fluid friction for fully developed turbulent flow of air and supercritical water with variable fluid properties. Trans. ASME 76, 73–85 (1954)

    Google Scholar 

  7. Dutta, G., Maitri, R., Zhang, C., Jiang, J.: Numerical models to predict steady and unsteady thermal-hydraulic behaviour of supercritical water flow in circular tubes. Nucl. Eng. Des. 289, 155–165 (2015)

    Article  Google Scholar 

  8. Gu, H.Y., Zhao, M., Cheng, X.: Experimental studies on heat transfer to supercritical water in circular tubes at high heat fluxes. Exp. Thermal Fluid Sci. 65, 22–32 (2015)

    Article  Google Scholar 

  9. He, S., Jiang, P., Xu, Y., Shi, R., Kim, W.S., Jackson, J.D.: A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube. Int. J. Therm. Sci. 44(6), 521–530 (2005)

    Article  Google Scholar 

  10. Jackson, J.: Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors. In: 3rd Pacific Basin Nuclear Conference, pp. 21–25 (2002)

    Google Scholar 

  11. Jäger, W., Hugo, S.E.V., Hurtado, A.: Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments. Nucl. Eng. Des. 241(6), 2184–2203 (2011)

    Article  Google Scholar 

  12. Jiang, P., Liu, B., Zhao, C., Luo, F.: Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime. Int. J. Heat Mass Transf. 56(1–2), 741–749 (2013)

    Article  Google Scholar 

  13. Jiang, P., Zhang, Y., Xu, Y., Shi, R.: Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low reynolds numbers. Int. J. Therm. Sci. 47(8), 998–1011 (2008)

    Article  Google Scholar 

  14. Jiang, P., Zhang, Y., Xu, Y., Shi, R.: Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low reynolds numbers. Exp. Thermal Fluid Sci. 32(8), 1628–1637 (2008)

    Article  Google Scholar 

  15. Koshizuka, S., Takano, N., Oka, Y.: Numerical analysis of deterioration phenomena in heat transfer to supercritical water. Int. J. Heat Mass Transf. 38(16), 3077–3084 (1995)

    Article  Google Scholar 

  16. Li, H.B., Zhao, M., Hu, Z.X., Zhang, Y., Wang, F.: Experimental study of supercritical water heat transfer deteriorations in different channels. Ann. Nucl. Energy 119, 240–256 (2018)

    Article  Google Scholar 

  17. Liao, S., Zhao, T.: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. Int. J. Heat Mass Transf. 45(25), 5025–5034 (2002)

    Article  Google Scholar 

  18. Liao, S., Zhao, T.: Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels. J. Heat Transfer 124(3), 413–420 (2002)

    Article  Google Scholar 

  19. Liu, L., Xiao, Z.J., Yan, X., Zeng, X.K., Huang, Y.P.: Heat transfer deterioration to supercritical water in circular tube and annular channel. Nucl. Eng. Des. 255, 97–104 (2013)

    Article  Google Scholar 

  20. Ma, D.L., Zhou, T., Li, B., Muhammad, A.S., Huang, Y.P.: An improved correlation on the onset of heat transfer deterioration in supercritical water. Nucl. Eng. Des. 326, 290–300 (2018)

    Article  Google Scholar 

  21. Menter, F.: Zonal two equation K-turbulence models for aerodynamic flows. In: 24th AIAA Fluid Dynamics Conference, pp. 1–21 (1993)

    Google Scholar 

  22. Mikielewicz, D., Shehata, A., Jackson, J., McEligot, D.: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows comparison of numerical predictions with data. Int. J. Heat Mass Transf. 45, 4333–4352 (2002)

    Article  Google Scholar 

  23. Mokry, S., Pioro, I., Farah, A., King, K., Gupta, S., Peiman, W., Kirillov, P.: Development of supercritical water heat-transfer correlation for vertical bare tubes. Nucl. Eng. Des. 241(4), 1126–1136 (2011)

    Article  Google Scholar 

  24. Ornatskij, A.P., Glushchenko, L.F., Kalachev, S.I.: Heat transfer with rising and falling flows of water in tubes of small diameter at supercritical pressures. Therm. Eng. 18(5), 137–141 (1971)

    Google Scholar 

  25. Palko, D., Anglart, H.: Theoretical and numerical study of heat transfer deterioration in HPLWR. In: Nuclear Energy for Europe, pp. 1–8 (2007)

    Google Scholar 

  26. Palko, D., Anglart, H.: Deteriorated heat transfer at low coolant flow rates. In: International Students Workshop on HPLWR, pp. 1–4 (2008)

    Google Scholar 

  27. Pioro, I.L., Khartabil, H., Duffey, R.B.: Heat transfer to supercritical fluids flowing in channels, empirical correlations (survey). Nucl. Eng. Des. 230(1–3), 69–91 (2004)

    Article  Google Scholar 

  28. Pioro, I.L., Duffey, R.B.: Experimental heat transfer in supercritical water flowing inside channels (survey). Nucl. Eng. Des. 235(22), 2407–2430 (2005)

    Article  Google Scholar 

  29. Sharabi, M., Ambrosini, W.: Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models. Ann. Nucl. Energy 36(1), 60–71 (2009)

    Article  Google Scholar 

  30. Shehata, A., McEligot, D.: Mean structure in the viscous layer of strongly-heated internal gas flows measurement. Int. J. Heat Mass Transf. 41(24), 4297–4313 (1998)

    Article  Google Scholar 

  31. Shiralkar, B., Griffith, P.: Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes. J. Heat Transfer 91(1), 27–36 (1969)

    Article  Google Scholar 

  32. Shitsman, M.: Impairment of the heat transmission at supercritical pressures. High Temp. 1, 237–244 (1963)

    Google Scholar 

  33. Swenson, H.S., Carver, J.R., Kakarala, C.R.: Heat transfer to supercritical water in smooth-bore tubes. J. Heat Transfer 87(4), 477–483 (1965)

    Article  Google Scholar 

  34. Tanaka, H., Tsuge, A., Hirata, M., Nishiwaki, N.: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow. J. Heat Mass Transf. 16(6), 1267–1288 (1973)

    Article  Google Scholar 

  35. Tang, C.B., Xing, S., Pang, H., Chen, P., Zhou, Y.: Numerical simulation research on the performance of SCWR fuel rod. J. Nucl. Eng. Radiat. Sci. 4(1), 011–014 (2017)

    Google Scholar 

  36. USNERC. A Technology Roadmap for Generation IV Nuclear Energy Systems (2002)

    Google Scholar 

  37. Verma, S.K., Sinha, S.L., Chandraker, D.K.: Experimental investigation of effect of spacer on single phase turbulent mixing rate on simulated subchannel of advanced heavy water reactor. Ann. Nucl. Energy 110, 186–195 (2017)

    Article  Google Scholar 

  38. Xi, X., Xiao, Z.J., Yan, X., Li, Y.L., Huang, Y.P.: An experimental investigation of flow instability between two heated parallel channels with supercritical water. Nucl. Eng. Des. 278(Supplement C), 171–181 (2014)

    Article  Google Scholar 

  39. Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T., Yoshida, S.: Forced convective heat transfer to supercritical water flowing in tubes. Int. J. Heat Mass Transf. 15(12), 2575–2593 (1972)

    Article  Google Scholar 

  40. Yang, J., Oka, Y., Ishiwatari, Y., Liu, J., Yoo, J.: Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles. Nucl. Eng. Des. 237(4), 420–430 (2007)

    Article  Google Scholar 

  41. Zhang, Y.N., Zhang, C., Jiang, J.: Numerical simulation of fluid flow and heat transfer of supercritical fluids in fuel bundles. Nucl. Sci. Technol. 48, 929–935 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maitri, R., Han, H., Zhang, C., Jiang, J. (2020). Numerical Investigation of the Deteriorated Heat Transfer Phenomenon for Supercritical Water Flows in Vertical Circular Tubes. In: Vasel-Be-Hagh, A., Ting, DK. (eds) Complementary Resources for Tomorrow. EAS 2019. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-38804-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38804-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38803-4

  • Online ISBN: 978-3-030-38804-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics