Skip to main content

Preliminaries and Basic Knowledge on Time Scales

  • Chapter
  • First Online:
Theory of Translation Closedness for Time Scales

Abstract

A time scale is an arbitrary nonempty closed subset of the real numbers. The theory of time scales calculus is a powerful tool not only to unify continuous and discrete analysis but also to model various natural phenomena that occur on hybrid time domains. In this chapter, some necessary preliminaries and basic knowledge on time scales will be introduced to lay a foundation for the later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P.: Difference Equations and Inequalities. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  2. Agarwal, R.P., Bohner. M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)

    Google Scholar 

  3. Agarwal, R.P., Bohner, M., O’Regan, D.: Time scale systems on infinite intervals. Nonlinear Anal. 47, 837–848 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Bohner, M., O’Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Agarwal, R.P., O’Regan, D.: Triple solutions to boundary value problems on time scales. Appl. Math. Lett. 13, 7–11 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Agarwal, R.P., O’Regan, D.: Existence of positive solutions to time scale equations using time scale inequalities. J. Differ. Equ. Appl. 7, 829–836 (2001). On the occasion of the 60th birthday of Calvin Ahlbrandt

    Google Scholar 

  8. Agarwal, R.P., O’Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  9. Agarwal, R.P., O’Regan, D.: Nonlinear boundary value problems on time scales. Nonlinear Anal. 44, 527–535 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  11. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  12. Agarwal, R.P., O’Regan, D., Saker, S.: Hardy Type Inequalities on Time Scales. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  13. Aulbach, B.: Continuous and Discrete Dynamics Near Manifolds of Equilibria. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  14. Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics. In: Qualitative Theory of Differential Equations (Szeged, 1988). Colloq. Math. Soc. János Bolyai, vol. 53, pp. 37–56. North-Holland, Amsterdam (1990)

    Google Scholar 

  15. Aulbach, B., Hilger, S.: Linear Dynamic processes with inhomogeneous time scale. In: Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990). Math. Res., vol. 59, pp. 9–20. Akademie, Berlin (1990)

    Google Scholar 

  16. Aulbach, B., PÖtzsche, C.: Reducibility of linear dynamic equations on measure chains. J. Comput. Appl. Math. 141, 101–115 (2002). Special Issue on “Dynamic Equations on Time Scales”, edited by Agarwal, R.P., Bohner, M., O’Regan, D.

    Google Scholar 

  17. Ahlbrandt, C.D., Peterson, A.C.: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Raccati Equations. Kulwer Academic, Boston (1996)

    Book  MATH  Google Scholar 

  18. Ahlbrandt, C.D., Heifetz, M., Hooker, J.W., Patula, W.T.: Asymptotics of discrete time Riccati equations, robust control, and discrete linear Hamiltonian systems. Panamer. Math. J. 5, 1–39 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Ahlbrandt, C.D., Bohner, M., Voepel.: Variable change for Sturm-Liouville differential operators on time scales. J. Differ. Equ. Appl. 9, 93–107 (2003)

    Google Scholar 

  20. Ahlbrandt, C.D., Bohner, M., Ridenhour, J.: Hamiltonian system on time scales. J. Math. Anal. Appl. 250, 561–578 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahlbrandt, C.D.: Equivalence of discrete Euler equations and discrete Hamiltonian systems. J. Math. Anal. Appl. 180, 498–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahlbrandt, C.D.: Continued fraction representations of maximal and minimal solutions of a discrete matrix Riccati equation. SIAM J. Math. Anal. 24, 1597–1621 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahlbrandt, C.D., Morian, C.: Partial differential equations on time scales. J. Comput. Appl. Math. 141, 35–55 (2002). Special Issue on “Dynamic Equations on Time Scales”, edited by Agarwal, R.P., Bohner, M., O’Regan, D,

    Google Scholar 

  24. Ahlbrandt, C.D., Ridenhour, J.: Floquet theory for time scales and Putzer representations of matrix logarithms. J. Differ. Equ. Appl. 9, 77–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Adamec, L.: A note on continuous dependence of solutions of dynamic equations on time scales. J. Differ. Equ. Appl. 17, 647–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Akın, E.: Cauchy functions for dynamic equations on a measure chain. J. Math. Anal. Appl. 267, 97–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Akın, E., Bohner, M., Erbe, L., Peterson, A.: Existence of bounded solutions for second order dynamic equations. J. Differ. Equ. Appl. 8, 389–401 (2002). In honor of Professor Lynn Erbe

    Article  MathSciNet  MATH  Google Scholar 

  28. Akin, E., Erbe, L., Kaymakçalan, B., Peterson, A.: Oscillation results for a dynamic equation on a time scale. J. Differ. Equ. Appl. 7, 793–810 (2001). On the occasion of the 60th birthday of Calvin Ahlbrandt

    Google Scholar 

  29. Atici, F.M., Guseinov, G.S.: On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 141, 75–99 (2002). Special Issue on “Dynamic Equations on Time Scales”, edited by Agarwal, R.P., Bohner, M., O’Regan, D.

    Google Scholar 

  30. Atici, F.M., Eloe, P.W., Kaymakçalan, B.: The quasilinearization method for boundary value problems on time scales. J. Math. Anal. Appl. 276, 357–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Atici, F.M., Biles, D.C.: First order dynamic inclusions on time scales. J. Math. Anal. Appl. 292, 222–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  34. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  35. Bohner, M., Lutz, D.A.: Asymptotic behavior of dynamic equations on time scales. J. Diff. Equ. Appl. 7, 21–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bohner, M., Martynyuk, A.A.: Elements of stability theory of A. M. Liapunov for dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 7, 225–251 (2007)

    MATH  Google Scholar 

  37. Cabada, A., Vivero, D.: Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ-antiderivatives. Math. Comput. Model. 43, 194–207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. DaCunha, J.J., Davis, J.M.: A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems. J. Differ. Equ. 251, 2987–3027 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Davis, J.M., Gravagne, I.A., Jackson, B.J., Marks II, R.J., Ramos, A.A.: The Laplace transform on time scales revisited. J. Math. Anal. Appl. 332, 1291–1307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dhage, B.C., Lakshmikantham, V.: Basic results on hybrid differential equations. Nonlinear Anal. Hybrid Syst. 4, 414–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deniz, A.: Measure theory on time scales. MSc thesis, Graduate School of Engineering and Sciences of Izmir Institute of Technology (2007)

    Google Scholar 

  42. Ferguson, B.S., Lim, G.C.: Dynamic Economic Models in Discrete Time: Theory and Empirical Applications. Routledge, London (2003)

    Book  Google Scholar 

  43. Guseinov S.G., Kaymakcalan B.: Basics of Riemann delta and nabla integration on time scales. J. Differ. Equ. Appl 8, 1001–1017 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Guseinov S.G.: Integration on time scales. J. Math. Anal. Appl. 285, 107–127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Guseinov S.G., Bohner M.: Riemann and Lebesgue Integration. In: Advances in Dynamic Equations on Time Scales, pp. 117–163. Birkhäuser, Boston (2003)

    Google Scholar 

  46. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D thesis, Universität Würzburg (1988)

    Google Scholar 

  47. Hilger, S.: Special functions, Laplace and Fourier transform on measure chains. Dyn. Syst. Appl. 8, 471–488 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Hilscher, R., Zeidan, V.: Riccati equations for abnormal time scale quadratic functionals. J. Differ. Equ. 244, 1410–1447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jackson, B.: Partial dynamic equations on time scales. J. Comput. Appl. Math. 186, 391–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kaymakçalan, B.: A survey of dynamic systems on measure chains. Funct. Differ. Equ. 6, 125–135 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Kaymakçalan, B.: Stability analysis in terms of two measures for dynamic systems on time scales. J. Appl. Math. Stoch. Anal. 6, 325–344 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kaymakçalan, B., Lakshmikantham, V., Sivasundaram, S.: Dynamic Systems on Measure Chains. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  53. Kaymakçalan, B., Özgün, S.A., Zafer, A.: Asymptotic behavior of higher-order nonlinear equations on time scales. Comput. Math. Appl. 36, 299–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kaymakçalan, B., Rangarajan, L.: Variation of Lyapunov’s method for dynamic systems on time scales. J. Math. Anal. Appl. 185, 356–366 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications, 2nd edn. Academic, San Diego (2001)

    MATH  Google Scholar 

  56. Kratz, W.: Sturm-Liouville difference equations and banded matrices. Arch. Math. (Brno) 36, 499–505 (2000)

    Google Scholar 

  57. Kratz, W., Peyerimhoff, A.: An elementary treatment of the theory of Sturmian eigenvalue problems. Analysis 4, 73–58 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kratz, W., Peyerimhoff, A.: A treatment of Sturm-Liouville eigenvalue problems via Picone’s identity. Analysis 4, 97–152 (1985)

    MathSciNet  MATH  Google Scholar 

  59. Kratz, W.: An inequality for finite differences via asymtotics for Riccati matrix difference equations. J. Differ. Equ. Appl. 4, 229–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kratz, W.: An oscillation theorem for self-adjoint differential systems and an index result for corresponding Riccati matrix differential equations. Math. Proc. Camb. Philos. Soc. 118, 351–361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lakshmikantham, V., Kaymakçalan, B.: Monotone flows and fixed points for dynamic systems on time scales. Comput. Math. Appl. 28, 185–189 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lakshmikantham, V., Sivasundaram, S.: Stability of moving invariant sets and uncertain dynamic systems on time scales. Comput. Math. Appl. 36, 339–346 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications. Academic, New York (1988)

    MATH  Google Scholar 

  64. Lakshmikantham, V., Vatsala, A.S.: Hybrid systems on time scales. J. Comput. Appl. Math. 141, 227–235 (2002). Special Issue on “ Dynamic Equations on Time Scales”, edited by Agarwal, R.P., Bohner, M., O’Regan, D.

    Google Scholar 

  65. Lakshmikantham, V., Monotone flow and fixed points for dynamic systems on time scales in a Banach space. Appl. Anal. 56, 175–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Academic, New York (1969)

    MATH  Google Scholar 

  67. Lakshmikantham, V., Shahzad, N., Sivasundaram, S.: Nonlinear variation of parameters formula for dynamical systems on measure chains. Dyn. Continuous Discrete Impuls. Syst. 1, 255–265 (1995)

    MathSciNet  MATH  Google Scholar 

  68. Mozyrska, D., Torres, D.F.M., Wyrwas, M.: Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales. Nonlinear Anal. Hybrid Syst. 32, 168–176 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  69. Peterson, A., Thompson, B.: Henstock-Kurzweil delta and nabla integrals. J. Math. Anal. Appl. 323, 162–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Poulsen, D., Wintz, N.: The Kalman filter on stochastic time scales. Nonlinear Anal. Hybrid Syst. 33, 151–161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pötzsche, C.: Exponential dichotomies for dynamic equations on measure chains. Nonlinear Anal. 47, 873–884 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pötzsche, C.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Saker, S.H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 187, 123–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  74. Seiffertt, J.: Adaptive resonance theory in the time scales calculus. Neural Netw. 120, 32–39 (2019)

    Article  Google Scholar 

  75. Sun, H.R., Li, W.T.: Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales. J. Differ. Equ. 240, 217–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tisdell, C.C., Zaidi, A.: Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with applications to economic modelling. Nonlinear Anal. Theory Methods Appl. 68, 3504–3524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhu, Z.Q., Wang, Q.R.: Existence of nonoscillatory solutions to neutral dynamic equations on time scales. J. Math. Anal. Appl. 335, 751–762 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C., Agarwal, R.P., O’Regan, D., Sakthivel, R. (2020). Preliminaries and Basic Knowledge on Time Scales. In: Theory of Translation Closedness for Time Scales . Developments in Mathematics, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-38644-3_1

Download citation

Publish with us

Policies and ethics