Skip to main content

An Artificial Bee Colony Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11968))

Included in the following conference series:

Abstract

Artificial Bee Colony algorithm is a very powerful Swarm Intelligence Algorithm that has been applied in a number of different kind of optimization problems since the time that it was published. In recent years there is a growing number of optimization models that trying to reduce the energy consumption in routing problems. In this paper, a new variant of Artificial Bee Colony algorithm, the Parallel Multi-Start Multiobjective Artificial Bee Colony algorithm (PMS-ABC) is proposed for the solution of a Vehicle Routing Problem variant, the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem (MERMDVRP). In the formulation four different scenarios are proposed where the distances between the customers and the depots are either symmetric or asymmetric and the customers have either demand or pickup. The algorithm is compared with three other multiobjective algorithms, the Parallel Multi-Start Non-dominated Sorting Differential Evolution (PMS-NSDE), the Parallel Multi-Start Non-dominated Sorting Particle Swarm Optimization (PMS-NSPSO) and the Parallel Multi-Start Non-dominated Sorting Genetic Algorithm II (PMS-NSGA II) in a number of benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baykasoglu, A., Ozbakor, L., Tapkan, P.: Artificial Bee Colony algorithm and its application to generalized assignment problem. In: Chan, F.T.S., Tiwari, M.K., (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Education and Publishing (2007)

    Google Scholar 

  2. Demir, E., Bektaş, T., Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

    Article  Google Scholar 

  3. Hancer, E., Xue, B., Zhang, M., Karaboga, D., Akay, B.: Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 422, 462–479 (2017)

    Article  Google Scholar 

  4. Kancharla, S., Ramadurai, G.: Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems. Sustain. Cities Soc. 40, 214–221 (2018)

    Article  Google Scholar 

  5. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  6. Karaboga, D., Akay, B., Ozturk, C.: Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_30

    Chapter  Google Scholar 

  7. Karaboga, D., Basturk, B.: On the performance of Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  8. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. (2009). https://doi.org/10.1007/s10462-009-9127-4

    Article  MATH  Google Scholar 

  9. Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. (2010). https://doi.org/10.1016/j.asoc.2009.12.025

    Article  Google Scholar 

  11. Kuo, Y.: Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59(1), 157–165 (2010)

    Article  Google Scholar 

  12. Li, J.: Vehicle routing problem with time windows for reducing fuel consumption. J. Comput. 7(12), 3020–3027 (2012)

    Google Scholar 

  13. Li, J., Wang, R., Li, T., Lu, Z., Pardalos, P.: Benefit analysis of shared depot resources for multi-depot vehicle routing problem with fuel consumption. Transp. Res. Part D Transp. Environ. 59, 417–432 (2018)

    Article  Google Scholar 

  14. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    Article  Google Scholar 

  15. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jimenez, H.F., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79, 115–129 (2015)

    Article  Google Scholar 

  16. Niu, Y., Yang, Z., Chen, P., Xiao, J.: A hybrid tabu search algorithm for a real-world open vehicle routing problem involving fuel consumption constraints. Hindawi (2018). https://doi.org/10.1155/2018/5754908

    Article  Google Scholar 

  17. Ozbakir, L., Baykasoglu, A., Tapkan, P.: Bees algorithm for generalized assignment problem. Appl. Math. Comput. 215, 3782–3795 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Psychas, I.-D., Marinaki, M., Marinakis, Y.: A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 336–350. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_23

    Chapter  Google Scholar 

  19. Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst. 8, 785–814 (2016)

    Article  Google Scholar 

  20. Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: Minimizing the fuel consumption of a multiobjective vehicle routing problem using the parallel multi-start NSGA II algorithm. In: Kalyagin, V., Koldanov, P., Pardalos, P. (eds.) Models, Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics and Statistics, vol. 156, pp. 69–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29608-1_5

    Chapter  Google Scholar 

  21. Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: Parallel multi-start non-dominated sorting particle swarm optimization algorithms for the minimization of the route-based fuel consumption of multiobjective vehicle routing problems. In: Butenko, S., Pardalos, P., Shylo, V. (eds.) Optimization Methods and Applications. Springer Optimization and Its Applications, vol. 130, pp. 425–456. Springer, Cham (2017)

    Chapter  Google Scholar 

  22. Rapanaki, E., Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: A clonal selection algorithm for multiobjective energy reduction multi-depot vehicle routing problem. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) LOD 2018. LNCS, vol. 11331, pp. 381–393. Springer, Cham (2019)

    Chapter  Google Scholar 

  23. Sabat, S.L., Udgata, S., Abraham, A.: Artificial Bee Colony algorithm for small signal model parameter extraction of MEFSET. Eng. Appl. Artif. Intell. (2010). https://doi.org/10.1016/j.engappai.2010.01.020

    Article  Google Scholar 

  24. Srivastava, S.K.: Green supply-chain management: a state-of the-art literature review. Int. J. Manag. Rev. 9(1), 53–80 (2007)

    Article  Google Scholar 

  25. Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp. Res. Part D 16(1), 73–77 (2011)

    Article  Google Scholar 

  26. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods and Applications. MOS-Siam Series on Optimization, 2nd edn. SIAM, Philadelphia (2014)

    Book  Google Scholar 

  27. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalene Marinaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapanaki, E., Psychas, ID., Marinaki, M., Marinakis, Y. (2020). An Artificial Bee Colony Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_17

Download citation

Publish with us

Policies and ethics