Skip to main content

Response Evaluation and Follow-Up by Imaging in Brain Tumours

  • Chapter
  • First Online:
Imaging and Interventional Radiology for Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 639 Accesses

Abstract

Brain tumours, either primary or secondary, are frequent. Primary brain tumours include mainly glioma, lymphoma and meningioma. Secondary tumours, i.e. brain metastases, are a frequent event during the disease course of patients with cancer. The evaluation of response to treatment is often difficult with structural imaging due to the interference of treatment effects. In this chapter, the role of advanced imaging for the differential diagnosis between pseudoprogression, radiation necrosis and tumour recurrence is described with perfusion and diffusion MR imaging, MR spectroscopy and PET imaging with amino acid analogues, fluorodeoxyglucose and other tracers. Furthermore, the commonly used response criteria for various brain tumours are described. For glioma, those set out by the response assessment in neuro-oncology (RANO) group are recommended. For brain metastases the RANO-brain metastases (RANO-BM) and RECIST criteria are commonly used. While conventional T1w post-contrast imaging is the mainstay imaging modality for basic response assessment, multimodal imaging is commonly necessary to evaluate the response to treatment of primary and secondary brain tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrey LE, Batchelor TT, AJM F et al (2005) Report of an International Workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Neuro-Oncol 23(22):5034–5043

    Google Scholar 

  • Afshar-Oromieh A, Giesel FL, Linhart HG et al (2012) Detection of cranial meningiomas: comparison of (68)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imag 39(9):1409–1415

    Google Scholar 

  • Aki T, Nakayama N, Yonezawa S et al (2012) Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neuro-Oncol 109:115–122

    Google Scholar 

  • Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM et al (2016) Response assessment in Neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 18:1199–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexiou GA, Gogou P, Markoula S, Kyritsis AP (2010) Management of meningiomas. Clin Neurol Neurosurg 112:117–182

    Google Scholar 

  • Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg 101:210–218

    PubMed  Google Scholar 

  • Awde AR, Boisgard R, Theze B et al (2013) The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med 54:2125–2131

    CAS  PubMed  Google Scholar 

  • Belohlavek O, Simonová G, Kantorova I et al (2003) Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imag 30:96–100

    CAS  Google Scholar 

  • van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593

    PubMed  Google Scholar 

  • Bergström M, Collins V, Ehrin E, Ericson K et al (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    PubMed  Google Scholar 

  • Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22(6):633–638

    PubMed  Google Scholar 

  • Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    PubMed  Google Scholar 

  • Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O-(2-[18F]fluorethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 36:841–847

    PubMed  Google Scholar 

  • Castillo M, Smith J, Kwock L, Wilber K (2001) Apparent diffusion coefficient in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 22:60–64

    CAS  PubMed  Google Scholar 

  • Cebeci H, Aydin O, Ozturk-Isik E et al (2014) Assessment of perfusion in glial tumors with arterial spin labeling: comparison with dynamic susceptibility contrast method. Eur J Radiol 83:1914–1919

    CAS  PubMed  Google Scholar 

  • Ceccon G, Lohmann P, Stoffels G et al (2017) Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology 19:281–288

    CAS  PubMed  Google Scholar 

  • Chalmers AJ, Ruff EM, Martindale C, Lovegrove N, Short SC (2009) Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int J Radiat Oncol Biol Phys 75(5):1511–1519

    CAS  PubMed  Google Scholar 

  • Chan Y, Leung S, King AD et al (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213:800–807

    CAS  PubMed  Google Scholar 

  • Chang JH, Chang JW, Choi JY, Park YG, Chung SS (2003) Complications after gamma knife radiosurgery for benign meningiomas. J Neurol Neurosurg Psychiatry 74:226–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charnley N, West CM, Barnett CM et al (2006) Early change in glucose metablic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys 66:331–338

    CAS  PubMed  Google Scholar 

  • Chen W, Delaloye S, Silverman DH, Geist C et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721

    CAS  PubMed  Google Scholar 

  • Colavolpe C, Colavolpe C, Metellus P, Mancini J et al (2012) FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan. Neuro-Oncology 14:649–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cremerius U, Bares R, Weis J et al (1997) Fasting improves discriminatio of grade 1 and atypical or malignant meningioma in FDG-PET. J Nucl Med 38(1):26–30

    CAS  PubMed  Google Scholar 

  • Dankbaar JW, Snijders TJ, Robe PA et al (2015) The use of 18F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. J Neuro-Oncol 125:167–175

    CAS  Google Scholar 

  • Dunet V, Pomoni A, Hottinger A et al (2016) Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro-Oncology 18:426–434

    CAS  PubMed  Google Scholar 

  • Dutour A, Kumar U, Panetta R et al (1998) Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76:620–627

    CAS  PubMed  Google Scholar 

  • Elias AE, Carlos RC, Smith EA et al (2011) MR spectroscopy using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Acad Radiol 18:1101–1108

    PubMed  Google Scholar 

  • Ferda J, Ferdová E, Hes O et al (2017) PET/MRI: multiparametric imaging of brain tumors. Eur J Radiol 94:A14–A25

    PubMed  Google Scholar 

  • Fuss M, Wenz F, Scholdei R et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurence. Int J Radiat Oncol Biol Phys 48(1):53–58

    CAS  PubMed  Google Scholar 

  • Gabeau-Lacet D, Aghi M, Betensky RA et al (2009) Bone involvement predicts poor outcome in atypical meningioma. J Neurosurg 111:464–471

    PubMed  PubMed Central  Google Scholar 

  • Gahramanov S, Raslan AM, Muldoon LL et al (2011) Potential for differentiation of pseudo-progression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys 79(2):514–523

    PubMed  Google Scholar 

  • Galldiks N, Kracht LW, Burghaus L et al (2006) Use of (11)C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imag 33:516–524

    CAS  Google Scholar 

  • Galldiks N, Langen KJ, Holy R et al (2012) Assessment of treatment response in patients with glioblastoma using [18F]Fluoroethyl-L-Tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057

    CAS  PubMed  Google Scholar 

  • Galldiks N, Rapp M, Stoffels G et al (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imag 40:22–23

    CAS  Google Scholar 

  • Galldiks N, Albert N, Sommerauer M, Grosu AL et al (2017a) PET imaging in patients with meningioma—report of the RANO/PET group. Neuro Oncol. https://doi.org/10.1093/neuonc/nox112. [Epub ahead of print]

  • Galldiks N, Langen KJ, Pope WB et al (2017b) The use of amino acid PET and conventrional MRI for monitoring of brain tumor therapy. NeuroImage Clin 13:386–394

    PubMed  Google Scholar 

  • Galldiks N et al (2019) Neuro-Oncology 21(5):585–595. https://doi.org/10.1093/neuonc/noz003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Rio M, Testart Dardel N, Santiago Chincilla A et al (2015) 18F-Fluorocholine PET/CT as a complementary tool in the follow-up of low-grade glioma: diagnostic accuracy and clinical utility. Eur J Nucl Med Mol Imag 42(6):886–895

    CAS  Google Scholar 

  • Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67(2):323–326

    CAS  PubMed  Google Scholar 

  • Haldorsen IS, Espeland A, Larsson E-M (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR 32:984–992

    CAS  PubMed  Google Scholar 

  • Heinzel A, Müller D, Langen KJ et al (2013) The use of O-(2-18F-fluoroethyl)-L-tyrosine PET for treatment management of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a cost-effectiveness analysis. J Nucl Med 54:1217–1222

    CAS  PubMed  Google Scholar 

  • Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42:356–370

    PubMed  PubMed Central  Google Scholar 

  • Hoffman JM, Waskin HA, Schifter T et al (1993) FDG-PET in differentiating lymphoma from non malignant central nervous system lesions in patients with AIDS. J Nucl Med 34:567–575

    CAS  PubMed  Google Scholar 

  • Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20(3):293–310

    PubMed  PubMed Central  Google Scholar 

  • Hu LS, Baxter LC, Smith KA et al (2008) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30(3):552–558

    PubMed  Google Scholar 

  • Inoue T, Ogasawara K, Beppu T et al (2005) iffusion tensor imaging for preoperative evaluation of tumor grades in gliomas. Clin Neurol Neurosurg 107:174–180

    PubMed  Google Scholar 

  • Jansen NL, Suchorska B, Schwarz SB et al (2013) [18]fluoroethyltyrosine-positron emission tomography-based threapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging 12:137–147

    CAS  PubMed  Google Scholar 

  • Johannesen TB, Lien HH, Hole KH, Lote K (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69:169–176

    PubMed  Google Scholar 

  • Kawai N, Miyake K, Yamamoto Y, Nishiyama Y, Tamiya T (2013) 18F-FDG PET in the diagnosis and treatment of primary central nervous system lymphoma. Biomed Res Int 2013:247152

    PubMed  PubMed Central  Google Scholar 

  • Kawase Y, Yamamoto Y, Kameyama R et al (2011) Comparison of 11C-methionine PET and 18F-FDG PET in patients with primary central nervous system lyphoma. Mol Imaging Biol 13(6):1284–1289

    PubMed  Google Scholar 

  • Kebir S, Rauschenbach L, Galldiks N et al (2016) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro-Oncology 18:1462–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RA, Garzon-Muvdi T, Yang W, Weingart J, Olivi A, Huang J, Brem H, Lim M (2017) Metastatic atypical and anaplastic meningioma: a case series and review of the literature. World Neurosurg 101:47–56

    PubMed  Google Scholar 

  • Kogan F, Hariharan H, Reddy R (2013) Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 1:102–114

    PubMed  PubMed Central  Google Scholar 

  • Kong D-S, Kim ST, Kim E-H et al (2011) Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assesing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 32:382

    PubMed  Google Scholar 

  • Kumar AJ, Leeds N, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    CAS  PubMed  Google Scholar 

  • Kunz WG, Jungblut LM, Kazmierczak PM et al (2017) Improved detection of transosseous meningiomas using 68Ga-DOTATATE PET-CT compared to contrast-enhanced MRI. J Nucl Med 58:1580

    CAS  PubMed  Google Scholar 

  • van Laere K, Ceyssens S, van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imag 32(1):39–51

    CAS  Google Scholar 

  • Langen KJ, Watts C (2016) Neuro-oncology: amino acid PET for brain tumors—ready for the clinic? Nat Rev Neurol 12:375–376

    PubMed  Google Scholar 

  • Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37:451–461

    PubMed  Google Scholar 

  • Lee SR, Yang KA, Kim SK, Kim S-H (2012) Radiation-induced intratumoral necrosis and peritumoral edema after gamma knife radiosurgery for intracranial meningiomas. J Korean Neurosurg Soc 52(2):98–102

    PubMed  PubMed Central  Google Scholar 

  • Leeman JE, Clumpa DA, Flickinger JC et al (2013) Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncology 15(12):1732–1738

    PubMed  PubMed Central  Google Scholar 

  • Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79(5):1487–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin NU, Lee EQ, Aoyama H et al (2013) Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol 14:e396–e406

    PubMed  Google Scholar 

  • Lin NU, Lee EQ, Aoyama H et al (2015) Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 16:270–278

    Google Scholar 

  • Lippitz B, Lindquist C, Paddick I et al (2014) Stereotactic radiosrugery in the treatment of brain metastases: the current evidence. Cancer Treat Rev 40:48–59

    PubMed  Google Scholar 

  • Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803

    PubMed  Google Scholar 

  • Macdonald D, Cascino TL, Schold SJ et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  • Makino K, Hirai T, Nakamura H et al (2011) Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann Nucl Med 25:432–438

    PubMed  Google Scholar 

  • Martino A, Krainik A, Pasteris C et al (2014) Neurological imaging of brain damages after radiotherapy and/or chimiotherapy. J Neuroradiol 41:52–70

    CAS  PubMed  Google Scholar 

  • Mertens K, Acou M, van Hauwe J et al (2013) Validation of 18F-FDG-PET at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: a stereotactic PET and MRI study. Clin Nucl Med 38:495–500

    PubMed  Google Scholar 

  • Nagesh V, Tsien CI, Chenevert TL et al (2008) Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 70(4):1002–1010

    PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Kumabe T, Kanamori M et al (2009) Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurol Med Chir (Tokyo) 49:394–401

    Google Scholar 

  • Nayak L, Iwamoto FM, Rudnick JD et al (2012) Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol 109:187–193

    CAS  PubMed  Google Scholar 

  • van Nifterik KA, van den Berg J, Stalpers LJA et al (2007) Differential radiosensitizing potential of temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int J Radiat Oncol Biol Phys 69(4):1246–1253

    PubMed  Google Scholar 

  • Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10):779–787

    CAS  PubMed  Google Scholar 

  • Nowak A, Dziedzic T, Krych P et al (2015) Benign versus atyptical meningiomas: risk factors predicting recurrence. Neurol Neurochir Pol 49:1–10

    PubMed  Google Scholar 

  • Nussbaum ES, Djalilian HR, Cho KH, Hall WA (1996) Brain metastases: histology, multiplicity, surgery and survival. Cancer 78(8):1781–1788

    CAS  PubMed  Google Scholar 

  • Ozsunar Y, Mullins ME, Kwong K et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 17:282–290

    PubMed  Google Scholar 

  • Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249(2):601–613

    PubMed  PubMed Central  Google Scholar 

  • Peca C, Pacelli R, Elefante A et al (2009) Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumor progression or radionecrosis? Clin Neurol Neurosurg 11:331–334

    Google Scholar 

  • Petr J, Platzek I, Seidlitz A et al (2015) Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. Radiother Oncol 118:24–28

    PubMed  Google Scholar 

  • Piroth MD, Pinkawa M, Holy R et al (2011) Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 80:176–184

    PubMed  Google Scholar 

  • Pollock BE, Link MJ, Stafford SL, Parney IF, Garces YI, Foote RL (2017) The risk of radiation-induced tumors or malignant transformation after single-fraction intracranial radiosurgery: results based on a 25-year experience. Int J Radiat Oncol Biol Phys 97(5):919–923

    PubMed  Google Scholar 

  • Prigent-Le Jeune F, Dubois F, Perez S, Blond S, Steinling M (2004) Technetium-99m sestamibi brain SPECT in the follow-up of glioma for evaluation of response to chemotherapy: first results. Eur J Nucl Med Mol Imag 31:714–719

    CAS  Google Scholar 

  • Quant EC, Wen PY (2011) Response assessment in neuro-oncology. Curr Oncol Rep 13(1):50–56

    PubMed  Google Scholar 

  • Rachinger W, Stoecklein VM, Terpolilli NA et al (2015) Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 56:347–353

    CAS  PubMed  Google Scholar 

  • Raimbault A, Cazals X, Lauvin M-A et al (2014) Radionecrosis of malignant glioma and cerebral metastases: a diagnostic challenge in MRI. Diagn Interv Imaging 95:985–1000

    CAS  PubMed  Google Scholar 

  • Reithmeier T, Lopez WO, Spehl TS et al (2013) Bevacizumab as salvage therapy for progressive brain stem gliomas. Clin Neurol Neurosurg 115:165–169

    CAS  PubMed  Google Scholar 

  • Roelcke U, Wyss MT, Nowosielski M et al (2016) Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro-Oncology 18:744–751

    CAS  PubMed  Google Scholar 

  • Rogers L, Barani I, Chamberlain M et al (2015) Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 122(4):4–23

    PubMed  PubMed Central  Google Scholar 

  • Rottenburger C, Hentschel M, Kelly T et al (2011) Comparison of C-11 methionine and C-11 choline for PET imaging of brain metastases: a prospective pilot study. Clin Nucl Med 36:639–642

    PubMed  Google Scholar 

  • Ryttlefors M, Danfors T, Latini F, Montelius A et al (2016) Long-term evaluation of the effect of hypofractionated high-energy proton treatment of benign meningiomas by means of (11)C-L-methionine positrion emission tomography. Eur J Nucl Med Mol Imag 43:1432–1443

    CAS  Google Scholar 

  • Saad S, Wang TJ (2015) Neurocognitive deficits after radiation therapy for brain malignancies. Am J Clin Oncol 38:634–640

    PubMed  Google Scholar 

  • Sanborn MR, Danish SF, Rosenfeld MR et al (2011) Treatment of steroid refractory, gamma knife related radiation necrosis with bevacizumab: case report and review of the literature. Clin Neurol Neurosurg 113:798–802

    PubMed  Google Scholar 

  • Santra A, Kumar R, Sharma P et al (2012) F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast-enhanced MRI. Eur J Radiol 81:508–513

    PubMed  Google Scholar 

  • Sathekge M, Goethals I, Maes A, van de Wiele C (2009) Positron emission tomography in patients suffering from HIV-1 infection. Eur J Nucl Med Mol Imag 36:1176–1184

    Google Scholar 

  • Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response to the central nervous system. Int J Radiat Oncol Biol Phys 31(5):1093–1112

    CAS  PubMed  Google Scholar 

  • Schwarzenberg J, Czernin J, Cloughesy TF et al (2014) Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 20:3550–3559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seibert TM, Karunamuni R, Kaifi S et al (2017) Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol Biol Phys 97(5):910–918

    PubMed  PubMed Central  Google Scholar 

  • Shim WH, Kim HS, Choi CG, Kim SJ (2015) Comparison of apparent diffusion coefficient and intravoxel incoherent motion for differentiating among glioblastoma, metastasis, and lymphoma focusing on diffusion-related parameter. PLoS One 10(7):e0134761

    PubMed  PubMed Central  Google Scholar 

  • Soares JM, Marques P, Alves V, Sousa N (2013) A Hitchhiker’s guide to diffusion tensor imaging. Front Neurosci 7:31

    PubMed  PubMed Central  Google Scholar 

  • Spence AM, Muzi M, Swanson KR, O’Sullivan F et al (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14:2623–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stupp R, Brada M, van den Bent MJ, Tonn J-C (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93–iii101

    PubMed  Google Scholar 

  • Su Z, Roncaroli F, Durrenberger PF et al (2015) Mitochondrial translocator protein in human gliomas: a 11C-(R)PK11195 PET imaging and neuropathology study. J Nucl Med 56:512–517

    CAS  PubMed  Google Scholar 

  • Suchorska B, Jansen NL, Linn J et al (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719

    CAS  PubMed  Google Scholar 

  • Sugahara T, Korogi Y, Tomiguchi S et al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    CAS  PubMed  Google Scholar 

  • Sugo N, Yokota K, Kondo K et al (2006) Early dynamic 201TI SPECT in the evaluation of brain tumours. Nucl Med Commun 27(2):143–149

    PubMed  Google Scholar 

  • Sundgren P (2009) MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 30:1469–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Symms M, Jäger HR, Schmierer K, Yousry TA (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75:1235–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsien C, Cao Y, Chenevert T (2014) Clinical applicatiosn for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226

    PubMed  PubMed Central  Google Scholar 

  • Tsui EY, Chan JH, Ramsey RG et al (2001) Late temporal lobe necrosis in patients with nasopharyngeal carcinoma: evaluation with combined multi-section diffusion weighted and perfusion weighted MR imaging. Eur J Radiol 39:133–138

    CAS  PubMed  Google Scholar 

  • Varrone A, Asenbaum S, van der Borght T, Booij J, Nobili F, Nagren K et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imag 36(12):2103–2110

    Google Scholar 

  • Voges J, Herholz K, Holzer T et al (1997) 11C-Methionine and 18F-2-Fluorodeoxy-glucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 69:1–4

    Google Scholar 

  • Walecki J, Sokol M, Pieniazek P et al (1999) Role of short TE 1H-MR spectroscopy in monitoring of post-operation irradiated patients. Eur J Radiol 30:154–161

    CAS  PubMed  Google Scholar 

  • Wardak M, Schiepers C, Gloughesy TF et al (2014) 18F-FLT and 18F-FDOPA PET kinetics in recurrent brain tumors. Eur J Nucl Med Mol Imag 41:1199–1209

    CAS  Google Scholar 

  • Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assesment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972

    PubMed  Google Scholar 

  • van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W (2017) Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol 19(5):719–725

    PubMed  Google Scholar 

  • Wick W, Chinot OL, Bendszus M, Mason W et al (2016) Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology 18(10):1434–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurker M, Herholz K, Voges J et al (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23(5):583–586

    CAS  PubMed  Google Scholar 

  • Wyss M, Hofer S, Bruehlmeier M et al (2009) Early metabolic responses in temozolomide treated low-grade glioma patients. J Neuro-Oncol 95:87–93

    CAS  Google Scholar 

  • Xu J-L, Li Y-L, Lian J-M et al (2010) Distinction between postoperative recurrent glioma and radiation injury using MR diffusion tensor imaging. Neuroradiology 52:1193–1199

    PubMed  Google Scholar 

  • Zheng Q, Yang L, Tan L-M, Qin L-X, Wang C-Y, Zhang H-N (2015) Stroke-like migraine attacks after radiation therapy syndrome. Chin Med J (Engl) 128(15):2097–2101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gahrmann, R., Arbizu, J., Laprie, A., Morales, M., Smits, M. (2020). Response Evaluation and Follow-Up by Imaging in Brain Tumours. In: Beets-Tan, R., Oyen, W., Valentini, V. (eds) Imaging and Interventional Radiology for Radiation Oncology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-38261-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38261-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38260-5

  • Online ISBN: 978-3-030-38261-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics