Skip to main content

On Minimizers and Critical Points for Anisotropic Isoperimetric Problems

  • Chapter
  • First Online:
2018 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 3))

  • 519 Accesses

Abstract

Anisotropic surface energies are a natural generalization of the perimeter functional that arise, for instance, in scaling limits for certain probabilistic models on lattices. We survey two recent results concerning isoperimetric problems with anisotropic surface energies. The first is joint work with Delgadino, Maggi, and Mihaila and provides a weak characterization of critical points in the anisotropic isoperimetric problem. The second is joint work with Choksi and Topaloglu and describes energy minimizers in an anisotropic variant of a model for atomic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Vestnik Leningrad. Univ. 13(19), 5–8 (1958)

    Google Scholar 

  2. Auffinger, A., Damron, M., Hanson, J.: 50 years of first-passage percolation, University Lecture Series, vol. 68. American Mathematical Society, Providence, RI (2017)

    Google Scholar 

  3. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \(\mathbb{R}^{N}\). SIAM J. Math. Anal. 46(4), 2310–2349 (2014)

    Google Scholar 

  4. Brothers, J.E., Morgan, F.: The isoperimetric theorem for general integrands. Michigan Math. J. 41(3), 419–431 (1994). DOI https://doi.org/10.1307/mmj/1029005070. URL http://dx.doi.org.ezproxy.lib.utexas.edu/10.1307/mmj/1029005070

  5. Cerf, R.: The Wulff crystal in Ising and percolation models, Lecture Notes in Mathematics, vol. 1878. Springer-Verlag, Berlin (2006). Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With a foreword by Jean Picard

    Google Scholar 

  6. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59(3), 330–343 (2006). https://doi.org/10.1002/cpa.20116

  7. Choksi, R., Neumayer, R., Topaloglu, I.: Anisotropic liquid drop models. Preprint available at arXiv:1810.08304

  8. Choksi, R., Peletier, M.: Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional. SIAM J. Math. Anal. 42(3), 1334–1370 (2010). DOI https://doi.org/10.1137/090764888. URL http://dx.doi.org/10.1137/090764888

  9. Choksi, R., Peletier, M.: Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional. SIAM J. Math. Anal. 43(2), 739–763 (2011). DOI https://doi.org/10.1137/10079330x. URL http://dx.doi.org/10.1137/10079330X

  10. Cook, N.: Models of the Atomic Nucleus: Unification Through a Lattice of Nucleons. Springer Berlin Heidelberg (2010). URL https://books.google.com/books?id=CwRGogWF5-oC

  11. Delgadino, M.G., Maggi, F., Mihaila, C., Neumayer, R.: Bubbling with L2-Almost Constant Mean Curvature and an Alexandrov-Type Theorem for Crystals. Arch. Ration. Mech. Anal. 230(3), 1131–1177 (2018). DOI https://doi.org/10.1007/s00205-018-1267-8. URL https://doi.org.turing.library.northwestern.edu/10.1007/s00205-018-1267-8

  12. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336-1, 441–507 (2015)

    Google Scholar 

  13. Figalli, A., Maggi, F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201(1), 143–207 (2011). DOI https://doi.org/10.1007/s00205-010-0383-x. URL http://dx.doi.org/10.1007/s00205-010-0383-x

  14. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010). DOI https://doi.org/10.1007/s00222-010-0261-z. URL http://dx.doi.org/10.1007/s00222-010-0261-z

  15. Fonseca, I.: The Wulff theorem revisited. Proc. Roy. Soc. London Ser. A 432(1884), 125–145 (1991). DOI https://doi.org/10.1098/rspa.1991.0009. URL http://dx.doi.org.ezproxy.lib.utexas.edu/10.1098/rspa.1991.0009

  16. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119(1–2), 125–136 (1991). DOI https://doi.org/10.1017/s0308210500028365. URL http://dx.doi.org.ezproxy.lib.utexas.edu/10.1017/S0308210500028365

  17. Fraenkel, L.E.: An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge (2000). URL https://doi.org/10.1017/CBO9780511569203

  18. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47(6), 4436–4450 (2015)

    Google Scholar 

  19. Gamow, G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126(803), 632–644 (1930). DOI https://doi.org/10.1098/rspa.1930.0032. URL http://rspa.royalsocietypublishing.org/content/126/803/632

  20. He, Y., Li, H., Ma, H., Ge, J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58(2), 853–868 (2009). DOI https://doi.org/10.1512/iumj.2009.58.3515. URL http://dx.doi.org/10.1512/iumj.2009.58.3515

  21. Julin, V.: Isoperimetric problem with a Coulomb repulsive term. Indiana Univ. Math. J. 63(1), 77–89 (2014). URL https://doi.org/10.1512/iumj.2014.63.5185

  22. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term I: The planar case. Comm. Pure Appl. Math. 66(7), 1129–1162 (2013). URL https://doi.org/10.1002/cpa.21451

  23. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term II: The general case. Comm. Pure Appl. Math. 67(12), 1974–1994 (2014). URL https://doi.org/10.1002/cpa.21479

  24. Lu, G., Zhu, J.: An overdetermined problem in Riesz-potential and fractional Laplacian. Non-linear Anal. 75(6), 3036–3048 (2012). URL https://doi.org/10.1016/j.na.2011.11.036

  25. Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Comm. Pure Appl. Math. 67(10), 1605–1617 (2014). URL https://doi.org/10.1002/cpa.21477

  26. Mackie, F.D.: Anisotropic surface tension and the liquid drop model. Nuclear Physics A 245(1), 61–86 (1975). DOI https://doi.org/10.1016/0375-9474(75)90082-2. URL http://www.sciencedirect.com/science/article/pii/0375947475900822

  27. Maggi, F.: Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012). URL https://doi.org/10.1017/CBO9781139108133. An introduction to geometric measure theory

  28. Reichel, W.: Characterization of balls by Riesz-potentials. Ann. Mat. Pura Appl. (4) 188(2), 235–245 (2009). URL https://doi.org/10.1007/s10231-008-0073-6

  29. Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamericana 3(3–4), 447–453 (1987)

    Google Scholar 

  30. Taylor, J.E.: Existence and structure of solutions to a class of nonelliptic variational problems. In: Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Roma, Maggio 1973), pp. 499–508. Academic Press, London (1974)

    Google Scholar 

  31. Taylor, J.E.: Unique structure of solutions to a class of nonelliptic variational problems. In: Differential geometry (Proc. Sympos. Pure. Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1, pp. 419–427. Amer. Math. Soc., Providence, R.I. (1975)

    Google Scholar 

  32. Wulff, G.: Zur frage der geschwindigkeit des wachsturms und der auflӧsungder kristallflächen. Z. Kristallogr. 34, 449–530 (1901)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Neumayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neumayer, R. (2020). On Minimizers and Critical Points for Anisotropic Isoperimetric Problems. In: de Gier, J., Praeger, C., Tao, T. (eds) 2018 MATRIX Annals. MATRIX Book Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-38230-8_20

Download citation

Publish with us

Policies and ethics