Skip to main content

Mineral Processing of Rare Earth Ores

  • Chapter
  • First Online:
Rare-Earth Metal Recovery for Green Technologies

Abstract

Demand for rare earth metals is increasing day by day in various high-tech applications such as super magnets, fluid cracking catalysts, nickel-metal-hydride (NiMH) batteries, and ordinance industries as well as in some defense applications. The rare earth metals are extracted from different REE-bearing minerals that occur in carbonatites, pegmatites, and placer deposits. About 95% of the world’s rare earth production comes from bastnaesite, monazite, and xenotime minerals. In many instances, rare earth minerals are found in association with various gangue minerals. The recovery of rare earth values from the lean-grade ores requires several stages of mineral beneficiation and hydrometallurgical unit operations. The mineral beneficiation techniques such as gravity concentration, magnetic separation, electrostatic separation, and flotation were employed for the recovery of rare earth minerals. The present chapter highlights the world distribution of rare earth deposits, occurrences, processing methodologies, and plant practices of few economic minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaka-Wood, G.B., Addai-Mensah, J., & Skinner, W. (2016). Review of flotation and physical separation of rare earth element minerals. 4th UMaT Biennial International Mining and Mineral Conference. Tarkwa Ghana, MR 55–62.

    Google Scholar 

  • Abaka-Wood, G. B., Quast, K., Zanin, M., Addai-Mensah, J., & Skinner, W. (2018). A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technology, 344, 897–913.

    Article  Google Scholar 

  • Abeidu, A. M. (1972). The separation of monazite from zircon by flotation. Journal of the Less Common Metals, 29, 113–119.

    Article  CAS  Google Scholar 

  • Andrews, W. H., Collins, D. N., & Hollick, C. T. (1990). The flotation of rare earths—a contribution to industrial hygiene. Carlton, VIC: Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • Beloglazov, K. F., & Osolodkov, G. A. (1936). Effect of the alkalinity of the pulp in flotation of apatite. Representative of the Leningrad Ministry Institute, 1, 26–30.

    Google Scholar 

  • Bulatovic, S. M. (2007). Handbook of flotation reagents. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53029-5.X5009-6.

    Book  Google Scholar 

  • Castor, S. B. (2008). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46, 779–806.

    Article  CAS  Google Scholar 

  • Chan, T. N. (1992). A new beneficiation process for the treatment of supergene monazite ore. In Rare earths: Extraction, preparation and applications (pp. 77–94). San Diego, CA: TMS and AusIMM.

    Google Scholar 

  • Chelgani, S. C., Rudolph, M., Leistner, T., Gutzmer, J., & Peuker, U. A. (2015). A review of rare earth minerals flotation: Monazite and xenotime. International Journal of Mining Science and Technology, 25, 877–883.

    Article  CAS  Google Scholar 

  • Cheng, Ta-Wui. (1993). Surface properties and flotation behaviour of monazite and xenotime. PhD thesis, The University of New South Wales.

    Google Scholar 

  • Cheng, T.-W., Holtham, P. N., & Tran, T. (1993). Froth flotation of monazite and xenotime. Minerals Engineering, 6, 341–351. https://doi.org/10.1016/0892-6875(93)90014-E.

    Article  CAS  Google Scholar 

  • Cheng, T.-W., Partridge, A. C., Tran, T., & Wong, P. L. M. (1994). The surface properties and flotation behaviour of xenotime. Minerals Engineering, 7, 1085–1098.

    Article  CAS  Google Scholar 

  • Chi R, Xu S, Zhu G, Xu J, Qiu X. (2001). Light metals 2001: Proceedings of the technical sessions presented by the TMS Aluminium Committee at the 130th TMS annual meeting, 1159–1165, New Orleans, Louisanna, February 2000. Warrendale, PA: Minerals, Metals and Materials Society.

    Google Scholar 

  • Cui, H., & Anderson, C. G. (2017). Alternative flowsheet for rare earth beneficiation of Bear Lodge ore. Minerals Engineering, 110, 166–178.

    Article  CAS  Google Scholar 

  • Dixit, S. G., & Biswas A. K. (1969). Minerals beneficiation – pH-dependence of the flotation and adsorption properties of some beach sand minerals. Trans AIME, 244(3), 173.

    Google Scholar 

  • Falconer, A. (2003). Gravity separation: Old technique/new methods. Physical Separation in Science and Engineering, 12, 31–48.

    Article  CAS  Google Scholar 

  • Ferron, C. J., Bulatovic, S. M., & Salter, R. S. (1991). Beneficiation of rare earth oxide minerals. Materials Science Forum, 70–72, 251–270.

    Article  Google Scholar 

  • Generalic, E. (2019). Rare Earth Elements (REE). EniG. Periodic table of the elements. Retrieved from https://www.periodni.com/rare_earth_elements.html

  • Gupta, C. K., & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. International Materials Reviews, 37, 197–248.

    Article  CAS  Google Scholar 

  • Gupta, C. K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Harada, T., Owada, S., Takiuchiand, T., & Kurita, M. (1993). A flotation study for effective separation of the heavy mineral sands. In XVIII international mineral processing congress (pp. 1017). New York.

    Google Scholar 

  • Hedrick, J. B., Sinha, S. P., & Kosynkin, V. D. (1997). Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3. Journal of Alloys and Compounds, 250, 467–470.

    Article  CAS  Google Scholar 

  • Houot, R., Cuif, J. P., Mottot, Y., & Samama, J. C. (1991). Recovery of rare earth minerals, with emphasis on flotation process. Materials Science Forum, 70–72, 301–324.

    Article  Google Scholar 

  • Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017.

    Article  CAS  Google Scholar 

  • Jordens, A., Sheridan, R. S., Rowson, N. A., Waters, K. E. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Engineering, 62, 9–18. https://doi.org/10.1016/j.mineng.2013.09.011

  • Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122.

    Article  CAS  Google Scholar 

  • Jun, R., Wenmei, W., Jiake, L., Gaoyun, Z., & Fangqiong, T. (2003). Progress of flotation reagents of rare earth minerals in China. Journal of Rare Earths, 21(1), 1–8.

    Google Scholar 

  • Kanazawa, Y., & Kamitani, M. (2006). Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408–412, 1339–1343.

    Article  Google Scholar 

  • Li, L. Z. & Yang, X. (2014). China’s rare earth ore deposits and beneficiation techniques. 1st European Rare Earth Resources Conference ERES2014. pp. 26–36.

    Google Scholar 

  • Li, L. Z., & Yang, X. (2016). China’s Rare Earth Resources, Mineralogy, and Beneficiation. In Rare earths industry (pp. 139–150). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Long, K., Gosen, B.S., Foley, N., & Cordier, D. 2010. The principal rare earth elements deposits of the United States. USGS Scientific Investigations Report: 2010–5220. Mineral Commodity Summaries.

    Google Scholar 

  • Moustafa, M. I., & Abdelfattah, N. A. (2010). Physical and chemical beneficiation of the Egyptian beach monazite: Beneficiation of monazite. Resource Geology, 60, 288–299.

    Article  CAS  Google Scholar 

  • Murthy, T. K. S., & Mukherjee, T. K. (2001). Processing of rare earth resources, rare earth metals, non-ferrous metals strategy cum source book. New Delhi: TIFAC.

    Google Scholar 

  • Ozeren, M.S. & Hutchinson H. 1990. The selective flotation of xenotime from heavy minerals. The AUSIMM annual conference. Rotorua New Zealand.

    Google Scholar 

  • Pavez, O., Brandao, P. R. G., & Peres, A. E. C. (1996). Adsorption of oleate and octyl-hydroxamate on to rare-earths minerals. Minerals Engineering, 9, 357–366.

    Article  CAS  Google Scholar 

  • Pavez, O., & Peres, A. E. C. (1993). Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamates. Minerals Engineering, 6, 69–78.

    Article  CAS  Google Scholar 

  • Pavez, O., & Peres, A. E. C. (1994). Technical note bench scale flotation of a Brazilian monazite ore. Minerals Engineering, 7, 1561–1564.

    Article  CAS  Google Scholar 

  • Pereira, C. A., & Peres, A. E. C. (1997). Flotation concentration of a xenotime pre-concentrate. Minerals Engineering, 10, 1291–1295.

    Article  Google Scholar 

  • Pradip, K. (1981). The surface properties and flotation of rare-earths minerals. Ann Arbor, MI: University Microfilms International.

    Google Scholar 

  • Pradip, K., & Fuerstenau, D. W. (1983). The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite. Colloids and Surfaces, 8, 103–119. https://doi.org/10.1016/0166-6622(83)80079-1.

    Article  CAS  Google Scholar 

  • Pradip, K., & Fuerstenau, D. W. (1991). The role of inorganic and organic reagents in the flotation separation of rare-earth ores. International Journal of Mineral Processing, 32, 1–22.

    Article  CAS  Google Scholar 

  • Pradip, K., & Fuerstenau, D. W. (2013). Design and development of novel flotation reagents for the beneficiation of Mountain Pass rare-earth ore. Mining, Metallurgy & Exploration, 30, 1–9.

    Article  CAS  Google Scholar 

  • Qi, D. (2018). Hydrometallurgy of rare earths: extraction and separation. Cambridge, MA: Elsevier.

    Google Scholar 

  • Rao, S. R. (2004). Surface chemistry of froth flotation. Kluwer Academic, New York, USA. https://doi.org/10.1007/978-1-4757-4302-9

  • Ren, J., Lu, S., Song, S., & Niu, J. (1997). A new collector for rare earth mineral flotation. Minerals Engineering, 10, 1395–1404.

    Article  CAS  Google Scholar 

  • Ren, J., Song, S., Lopez-Valdivieso, A., & Lu, S. (2000). Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant. International Journal of Mineral Processing, 59, 237–245.

    Article  CAS  Google Scholar 

  • Ren, J., Wang, W. M., Luo, J. K., Zhou, G. Y., & Tang, F. Q. (2003). Progress of flotation reagents of rare earth minerals in China. Journal of Rare Earths, 21, 1–8.

    Google Scholar 

  • Richter, L., Diamond, L.W., Atanasova, P., Banks, D.A., & Gutzmer, J. (2018). Hydrothermal formation of heavy rare earth element (HREE) – xenotime deposits at 100 °C in a sedimentary basin. Geology, 26(3). 263–266. ISSN 0091-7613 https://doi.org/10.1130/G39871.1

  • Smith, R. W., & Shonnard, D. (1986). Electrokinetic study of the role of modifying agents in flotation of salt-type minerals. AICHE Journal, 32, 865–868.

    Article  CAS  Google Scholar 

  • Sorensen, E. & Lundgaard, T.. (1966). Selective flotation of steenstrupine and monazite from Kvanefjeld Lujavrite—Report for the Danish Atomic Energy Commission. Roskilde.

    Google Scholar 

  • Spedding, F. H. (1975). Contributions of the rare earths to science and technology. Symposium on the effects of rare earths on the properties of metals and alloys. ASM, Cincinnati, Ohio, United States of America, 1–11.

    Google Scholar 

  • Taikang, D., & Yingnan, H. (1980) Studies on high grade rare earth flotation technology. Multipurpose Utilization of Mineral Resources, 1, 27–33 (in Chinese)

    Google Scholar 

  • U.S. Geological Survey. (2017). Mineral commodity summaries 2017: U.S. Geological Survey, 202 p. https://doi.org/10.3133/70180197

  • Xiong, W., Deng, J., Chen, B., Deng, S., & Wei, D. (2018). Flotation-magnetic separation for the beneficiation of rare earth ores. Minerals Engineering, 119, 49–56.

    Article  CAS  Google Scholar 

  • Yang, X. J., Lin, A., Li, X.-L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131–136.

    Article  Google Scholar 

  • Zhang, J., & Edwards, C. (2012). A review on rare earth mineral processing technology. In 44th Annual Meeting of the Canadian Mineral Processing (pp. 79–102). Ottawa: CIM.

    Google Scholar 

  • Zhang, W., & Honaker, R. (2017). Surface charge of rare earth phosphate (monazite) in aqueous solutions. Powder Technology, 318, 263 – 271. https://doi.org/10.1016/j.powtec.2017.05.048

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar I. Angadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.K., Angadi, S.I., Kundu, T., Basu, S. (2020). Mineral Processing of Rare Earth Ores. In: Jyothi, R. (eds) Rare-Earth Metal Recovery for Green Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-38106-6_2

Download citation

Publish with us

Policies and ethics