Skip to main content

Congenital Tracheal Disorders in Children

  • Living reference work entry
  • First Online:
Evidence-Based Imaging in Pediatrics

Part of the book series: Evidence-Based Imaging ((Evidence-Based Imag.))

  • 74 Accesses

Abstract

Congenital tracheal disorders are a heterogeneous group of pathologies characterized by noisy breathing and abnormal compressibility of the main airway. They encompass a wide variety of abnormalities and can differ in prevalence and/or incidence. Congenital tracheal abnormalities can present as impaired/abnormal cartilage development, or as extrinsic compression from other thoracic/gastrointestinal organs; they can also be classified as static or dynamic anomalies [1, 2]. While some of them may not warrant an urgent medical visit, others may acutely effect a child’s life, potentially causing airway obstruction, impairment of ventilation, respiratory distress, or cerebral hypoxia and requiring emergent management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Javia L, Harris MA, Fuller S. Rings, slings, and other tracheal disorders in the neonate. Semin Fetal Neonatal Med. 2016;21(4):277–84.

    Article  PubMed  Google Scholar 

  2. Prountzos S, Papakonstantinou O, Bizimi V, Velonakis G, Mazioti A, Douros K, et al. Large airway diseases in pediatrics: a pictorial essay. Acta Radiol Open. 2020;9(12):2058460120972694.

    PubMed  PubMed Central  Google Scholar 

  3. Standring S. Development of the lungs, thorax and respiratory diaphragm. In: Standring S, editor. Gray’s Anatomy. 42nd ed. New York: Elsevier; 2021. p. 314–22.

    Google Scholar 

  4. Marcus CL, Smith RJH, Mankarious LA, Arens R, Mitchell GS, Elluru RG, et al. Developmental aspects of the upper airway: report from an NHLBI Workshop, March 5–6, 2009. Proc Am Thorac Soc. 2009;6(6):513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sodhi KS, Rana P, Bhatia A, Saxena AK, Mathew JL, Winant AJ, et al. Diagnostic utility of MDCT in evaluation of persistent stridor in children: large airway causes and benefit of additional findings. Pediatr Pulmonol. 2021;56(7):2169–76.

    Article  PubMed  Google Scholar 

  6. Darras KE, Roston AT, Yewchuk LK. Imaging acute airway obstruction in infants and children. Radiographics. 2015;35(7):2064–79.

    Article  PubMed  Google Scholar 

  7. Infosino A. Pediatric upper airway and congenital anomalies. Anesthesiol Clin North Am. 2002;20(4):747–66.

    Article  PubMed  Google Scholar 

  8. Hsu G, Fiadjoe JE. The pediatric difficult airway: updates and innovations. Anesthesiol Clin. 2020;38(3):459–75.

    Article  PubMed  Google Scholar 

  9. Chalwadi UK, Swamy N, Agarwal A, Gauss CH, Greenberg SB, Lyons KA. Determining normal values for lower trachea and bronchi size in children by computed tomography (CT). Pediatr Pulmonol. 2021;56(9):2940–8.

    Article  PubMed  Google Scholar 

  10. Cellina M, Gibelli D, Floridi C, Cappella A, Oliva G, Dolci C, et al. Changes of intrathoracic trachea with respiration in children: a metrical assessment based on 3D CT models. Clin Imaging. 2021;74:10–4.

    Article  PubMed  Google Scholar 

  11. Luscan R, Leboulanger N, Fayoux P, Kerner G, Belhous K, Couloigner V, et al. Developmental changes of upper airway dimensions in children. Paediatr Anaesth. 2020;30(4):435–45.

    Article  PubMed  Google Scholar 

  12. Fenley H, Voorman M, Dove JT, Greene JS. Predicting pediatric tracheal airway size from anthropomorphic measurements. Int J Pediatr Otorhinolaryngol. 2020;134:110020.

    Article  PubMed  Google Scholar 

  13. Gunjan A, Faseehullah MA. Is ultrasonography a better method of endotracheal tube size estimation in pediatric age group than the conventional physical indices-based formulae? Anesth Essays Res. 2020;14(4):561–5.

    CAS  PubMed  Google Scholar 

  14. Alqahtani SA, Alghamdi AM, Babader RA, Aljehani DA, Alsultan RK, Mushari RY, et al. Tracheal bronchus: a rare etiology of recurrent pneumonia in children. Cureus. 2021;13(12):e20378.

    PubMed  PubMed Central  Google Scholar 

  15. Aladham Y, Bonduelle Q, Yaro J, Ahmed O. Double aortic arch: a rare cause of stridor in infants. J Surg Case Rep. 2021;2021(12):rjab567.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong LM, Cheruiyot I, de Oliveira MHS, Keet K, Tomaszewski KA, Walocha JA, et al. Congenital anomalies of the tracheobronchial tree: a meta-analysis and clinical considerations. Ann Thorac Surg. 2021;112(1):315–25.

    Article  PubMed  Google Scholar 

  17. Fockens MM, Hölscher M, Limpens J, Dikkers FG. Tracheal anomalies associated with Down syndrome: a systematic review. Pediatr Pulmonol. 2021;56(5):814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mehta PA, Sharma G. Congenital pulmonary airway malformation. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  19. Maeda K. Pediatric airway surgery. Pediatr Surg Int. 2017;33(4):435–43.

    Article  PubMed  Google Scholar 

  20. Ray M, Sathe P, Vaideeswar P, Marathe SP. The ring-and-sling complex – does it “ring” true? Indian J Pathol Microbiol. 2021;64(4):683–6.

    PubMed  Google Scholar 

  21. Stagnaro N, Rizzo F, Torre M, Cittadini G, Magnano G. Multimodality imaging of pediatric airways disease: indication and technique. Radiol Med. 2017;122(6):419–29.

    Article  PubMed  Google Scholar 

  22. Cristallo Lacalamita M, Fau S, Bornand A, Vidal I, Martino A, Eperon I, et al. Tracheal agenesis: optimization of computed tomography diagnosis by airway ventilation. Pediatr Radiol. 2018;48(3):427–32.

    Article  PubMed  Google Scholar 

  23. Snijders D, Barbato A. An update on diagnosis of tracheomalacia in children. Eur J Pediatr Surg. 2015;25(4):333–5.

    Article  PubMed  Google Scholar 

  24. Choi S, Lawlor C, Rahbar R, Jennings R. Diagnosis, classification, and management of pediatric tracheobronchomalacia: a review. JAMA Otolaryngol Head Neck Surg. 2019;145(3):265–75.

    Article  PubMed  Google Scholar 

  25. Tivnan P, Winant AJ, Epelman M, Lee EY. Pediatric congenital lung malformations: imaging guidelines and recommendations. Radiol Clin N Am. 2022;60(1):41–54.

    Article  PubMed  Google Scholar 

  26. Shalev S, Ben-Sira L, Wasserzug O, Shaylor R, Shiran SI, Ekstein M. Utility of three-dimensional modeling of the fetal airway for ex utero intrapartum treatment. J Anesth. 2021;35(4):595–8.

    Article  PubMed  Google Scholar 

  27. Park S, Ahn J, Yoon SU, Choo KS, Kim H-J, Chung M, et al. Prediction of endotracheal tube size using a printed three-dimensional airway model in pediatric patients with congenital heart disease: a prospective, single-center, single-group study. Korean J Anesthesiol. 2021;74(4):333–41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li T-G, Li Q-L, Ma B, Qi P-A, Wang J, Yang L. Prenatal diagnosis of complete vascular ring using high-definition flow render mode and spatiotemporal image correlation. Echocardiography. 2021;38(3):488–92.

    Article  PubMed  Google Scholar 

  29. Vigneswaran TV, Kapravelou E, Bell AJ, Nyman A, Pushparajah K, Simpson JM, et al. Correlation of symptoms with bronchoscopic findings in children with a prenatal diagnosis of a right aortic arch and left arterial duct. Pediatr Cardiol. 2018;39(4):665–73.

    Article  PubMed  Google Scholar 

  30. de Groot-van der Mooren MD, Haak MC, Lakeman P, Cohen-Overbeek TE, van der Voorn JP, Bretschneider JH, et al. Tracheal agenesis: approach towards this severe diagnosis. Case report and review of the literature. Eur J Pediatr. 2012;171(3):425–31.

    Article  Google Scholar 

  31. Georgescu T, Radoi V, Radulescu M, Ilian A, Toader OD, Pop LG, et al. Prenatal diagnosis and outcome of tracheal agenesis as part of congenital high airway obstruction syndrome. case presentation and literature review. Medicina (Kaunas). 2021;57(11):1253.

    Article  Google Scholar 

  32. Oliver ER, DeBari SE, Horii SC, Pogoriler JE, Victoria T, Khalek N, et al. Congenital lobar overinflation: a rare enigmatic lung lesion on prenatal ultrasound and magnetic resonance imaging. J Ultrasound Med. 2019;38(5):1229–39.

    Article  PubMed  Google Scholar 

  33. Alamo L, Vial Y, Gengler C, Meuli R. Imaging findings of bronchial atresia in fetuses, neonates and infants. Pediatr Radiol. 2016;46(3):383–90.

    Article  PubMed  Google Scholar 

  34. Johnston JH, Kline-Fath BM, Bitters C, Calvo-Garcia MA, Lim F-YY. Congenital overinflation: prenatal MRI and US findings and outcomes. Prenat Diagn. 2016;36(6):568–75.

    Article  PubMed  Google Scholar 

  35. Gunatilaka CC, Higano NS, Hysinger EB, Gandhi DB, Fleck RJ, Hahn AD, et al. Increased work of breathing due to tracheomalacia in neonates. Ann Am Thorac Soc. 2020;17(10):1247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roebuck DJ, Stockton E, Ritchie-McLean SN, McLaren CA. Interventional radiology in the airway in children. Paediatr Anaesth. 2020;30(3):311–8.

    Article  PubMed  Google Scholar 

  37. Koshy T, Misra S, Chatterjee N, Dharan BS. Accuracy of a chest X-ray-based method for predicting the depth of insertion of endotracheal tubes in pediatric patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2016;30(4):947–53.

    Article  PubMed  Google Scholar 

  38. Rudman DT, Elmaraghy CA, Shiels WE, Wiet GJ. The role of airway fluoroscopy in the evaluation of stridor in children. Arch Otolaryngol Head Neck Surg. 2003;129(3):305–9.

    Article  PubMed  Google Scholar 

  39. Roebuck DJ, Murray C, McLaren CA. Imaging of airway obstruction in children. Front Pediatr. 2020;8:579032.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deutsch ES, Smergel E, Crisci K, Panitch H. Tracheobronchography in children. Laryngoscope. 1996;106(10):1248–54.

    Article  CAS  PubMed  Google Scholar 

  41. Contrast Manual | American College of Radiology [Internet]. [cited 2022 Mar 13]. Available from: https://www.acr.org/Clinical-Resources/Contrast-Manual.

  42. Reich SB. Production of pulmonary edema by aspiration of water-soluble nonabsorbable contrast media. Radiology. 1969;92(2):367–70.

    Article  CAS  PubMed  Google Scholar 

  43. McAlister WH, Askin FB. The effect of some contrast agents in the lung: an experimental study in the rat and dog. AJR Am J Roentgenol. 1983;140(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  44. Manimtim WM, Rivard DC, Sherman AK, Cully BE, Reading BD, Lachica CI, et al. Tracheobronchomalacia diagnosed by tracheobronchography in ventilator-dependent infants. Pediatr Radiol. 2016;46(13):1813–21.

    Article  PubMed  Google Scholar 

  45. Little AF, Phelan EM, Boldt DW, Brown TC. Paediatric tracheobronchomalacia and its assessment by tracheobronchography. Australas Radiol. 1996;40(4):398–403.

    Article  CAS  PubMed  Google Scholar 

  46. Cheung YF, Lee SL, Leung MP, Yung TC, Chau AKT, Hui HKY. Tracheobronchography and angiocardiography of paediatric cardiac patients with airway disorders. J Paediatr Child Health. 2002;38(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  47. Stagnaro N, Sacco O, Torre M, Moscatelli A, Marasini M, Guerriero V, et al. Tracheobronchography for pediatric airway disease is still a valuable technique? Minerva Pediatr (Torino). 2021;

    Google Scholar 

  48. Ramsingh D, Ghazal E, Gordon B, Ross P, Goltiao D, Alschuler M, et al. Relationship between evaluations of tracheal tube position using ultrasound and fluoroscopy in an infant and pediatric population. J Clin Med. 2020;9(6):1707.

    Article  PubMed Central  Google Scholar 

  49. Wani TM, John J, Rehman S, Bhaskar P, Sahabudheen AF, Mahfoud ZR, et al. Point-of-care ultrasound to confirm endotracheal tube cuff position in relationship to the cricoid in the pediatric population. Paediatr Anaesth. 2021;31(12):1310–5.

    Article  PubMed  Google Scholar 

  50. Daniel SJ, Bertolizio G, McHugh T. Airway ultrasound: point of care in children-the time is now. Paediatr Anaesth. 2020;30(3):347–52.

    Article  PubMed  Google Scholar 

  51. Verma M, Pandey NN, Ojha V, Jagia P, Kumar S, Kothari SS, et al. Evaluation of cardiovascular morphology and airway-related abnormalities in tetralogy of fallot with absent pulmonary valve syndrome on multidetector computed tomography angiography. J Card Surg. 2021;36(8):2697–704.

    Article  PubMed  Google Scholar 

  52. Andronikou S, Chopra M, Langton-Hewer S, Maier P, Green J, Norbury E, et al. Technique, pitfalls, quality, radiation dose and findings of dynamic 4-dimensional computed tomography for airway imaging in infants and children. Pediatr Radiol. 2019;49(5):678–86.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kuo C-FJ, Leu Y-S, Kuo R, Su C-H, Yuan T-C, Ke B-H, et al. Three-dimensional reconstruction of trachea using computed tomography imaging as therapy for tracheal stenosis in infants. Comput Methods Prog Biomed. 2016;132:177–87.

    Article  Google Scholar 

  54. Erlichman DB, Blitman N, Weinstein S, Taragin B. Use of multidetector computed tomography 3D reconstructions in assessing lower tracheal-bronchial pathology and subsequent surgical interventions. Clin Imaging. 2015;39(2):259–63.

    Article  PubMed  Google Scholar 

  55. Naina P, Syed KA, Irodi A, John M, Varghese AM. Pediatric tracheal dimensions on computed tomography and its correlation with tracheostomy tube sizes. Laryngoscope. 2020;130(5):1316–21.

    Article  CAS  PubMed  Google Scholar 

  56. Mizuguchi S, Motomura Y, Maki J, Baba R, Ichimiya Y, Tokuda K, et al. Tracheal size and morphology on the reconstructed CT imaging. Pediatr Crit Care Med. 2019;20(8):e366–71.

    Article  PubMed  Google Scholar 

  57. Wani TM, John J, Bahun V, AlGhamdi F, Tumin D, Tobias JD. Endotracheal tube cuff position in relation to the cricoid in children: a retrospective computed tomography-based analysis. Saudi J Anaesth. 2021;15(4):403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ngerncham M, Lee EY, Zurakowski D, Tracy DA, Jennings R. Tracheobronchomalacia in pediatric patients with esophageal atresia: comparison of diagnostic laryngoscopy/bronchoscopy and dynamic airway multidetector computed tomography. J Pediatr Surg. 2015;50(3):402–7.

    Article  PubMed  Google Scholar 

  59. Averill LW, Kecskemethy HH, Theroux MC, Mackenzie WG, Pizarro C, Bober MB, et al. Tracheal narrowing in children and adults with mucopolysaccharidosis type IVA: evaluation with computed tomography angiography. Pediatr Radiol. 2021;51(7):1202–13.

    Article  PubMed  Google Scholar 

  60. Poore TS, Weinman JP, Handley E, Wine T, Helland S, Corbett B, et al. Vascular and pulmonary comorbidities in children with congenital EA/TEF. Pediatr Pulmonol. 2021;56(2):571–7.

    Article  PubMed  Google Scholar 

  61. Ullmann N, Secinaro A, Menchini L, Caggiano S, Verrillo E, Santangelo TP, et al. Dynamic expiratory CT: an effective non-invasive diagnostic exam for fragile children with suspected tracheo-bronchomalacia. Pediatr Pulmonol. 2018;53(1):73–80.

    Article  PubMed  Google Scholar 

  62. May LA, Jadhav SP, Guillerman RP, Ketwaroo PD, Masand P, Carbajal MM, et al. A novel approach using volumetric dynamic airway computed tomography to determine positive end-expiratory pressure (PEEP) settings to maintain airway patency in ventilated infants with bronchopulmonary dysplasia. Pediatr Radiol. 2019;49(10):1276–84.

    Article  PubMed  Google Scholar 

  63. Poynot WJ, Gonthier KA, Dunham ME, Crosby TW. Classification of tracheal stenosis in children based on computational aerodynamics. J Biomech. 2020;104:109752.

    Article  PubMed  Google Scholar 

  64. Xu R, Shi K, Yang Z-G, Diao K-Y, Zhao Q, Xu H-Y, et al. Quantified evaluation of tracheal compression in pediatric complex congenital vascular ring by computed tomography. Sci Rep. 2018;8(1):11183.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shi K, Gao H-L, Yang Z-G, Feng H-J, Liu X, Guo Y-K. Dual-source computed tomography for quantitative assessment of tracheobronchial anomaly from type IIA pulmonary artery sling in pediatric patients. Eur J Radiol. 2018;102:30–5.

    Article  PubMed  Google Scholar 

  66. Hysinger EB, Bates AJ, Higano NS, Benscoter D, Fleck RJ, Hart CK, et al. Ultrashort echo-time MRI for the assessment of tracheomalacia in neonates. Chest. 2020;157(3):595–602.

    Article  PubMed  Google Scholar 

  67. Zirpoli S, Munari AM, Primolevo A, Scarabello M, Costanzo S, Farolfi A, et al. Agreement between magnetic resonance imaging and computed tomography in the postnatal evaluation of congenital lung malformations: a pilot study. Eur Radiol. 2019;29(9):4544–54.

    Article  PubMed  Google Scholar 

  68. Sommburg O, Helling-Bakki A, Alrajab A, Schenk J-P, Springer W, Mall MA, et al. Assessment of suspected vascular rings and slings and/or airway pathologies using magnetic resonance imaging rather than computed tomography. Respiration. 2019;97(2):108–18.

    Article  PubMed  Google Scholar 

  69. Leonardi B, Secinaro A, Cutrera R, Albanese S, Trozzi M, Franceschini A, et al. Imaging modalities in children with vascular ring and pulmonary artery sling. Pediatr Pulmonol. 2015;50(8):781–8.

    Article  PubMed  Google Scholar 

  70. Bell JR, Cohen AP, Graff JT, Fleck RJ, O’Hara S, de Alarcon A, et al. Pilot study to assess the use of ultrasound in evaluating the abnormal pediatric airway. Otolaryngol Head Neck Surg. 2020;162(6):950–3.

    Article  PubMed  Google Scholar 

  71. Itoh T, Gorga S, Hashikawa A, Cranford J, Thomas J, Hatton C, et al. Point-of-care ultrasound for pediatric endotracheal tube placement confirmation by advanced practice transport nurses. Air Med J. 2020;39(6):448–53.

    Article  PubMed  Google Scholar 

  72. Xu Y, Li L, Hou J, Zhang N, Zeng M, Qiu Q, et al. 3D CT airway evaluation-guided intraluminal placement of endobronchial blocker in pediatric patients: a randomized controlled study. Transl Pediatr. 2021;10(3):625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Elders B, Ciet P, Tiddens H, van den Bosch W, Wielopolski P, Pullens B. MRI of the upper airways in children and young adults: the MUSIC study. Thorax. 2021;76(1):44–52.

    Article  PubMed  Google Scholar 

  74. Hou Q, Gao W, Zhong Y, Sun A, Wang Q, Hu L, et al. Diagnostic accuracy of three-dimensional turbo field echo magnetic resonance imaging sequence in pediatric tracheobronchial anomalies with congenital heart disease. Sci Rep. 2018;8(1):2529.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Octavio Tierradentro-Garcia or Hansel J. Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tierradentro-Garcia, L.O., Rapp, J.B., Otero, H.J. (2022). Congenital Tracheal Disorders in Children. In: Otero, H.J., Kaplan, S.L., Medina, L.S., Blackmore, C.C., Applegate, K.E. (eds) Evidence-Based Imaging in Pediatrics. Evidence-Based Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-38095-3_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38095-3_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38095-3

  • Online ISBN: 978-3-030-38095-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics