Skip to main content

Non-destructive Testing of Quality of Welded Joints of Titanium Plates of Superminiature Eddy-Current Probes

  • Conference paper
  • First Online:
VIII International Scientific Siberian Transport Forum (TransSiberia 2019)

Abstract

This article contains the main technical information on the measuring system and the eddy-current transducer used, and describes the measurement procedure to control defects in welds of titanium alloys, including the use of two subminiature eddy-current transducers, one of which is to be fixed above the weld, and the another is to be used directly for scanning. The experimental results obtained by means of the developed measuring system for samples of various titanium plates joined by welds are presented. Dependences of the eddy-current transducer signal that show the changes of the weak and defect-free weld signals are given. Defects in welds are defined by a dramatic drop in signal amplitude of the eddy-current transducer signal when scanning weld areas with defects. Experiments were conducted on welded BT1-0 titanium plates. The article contains the results of these measurements. The dependence data facilitates the assessment of the quality of welding seams and helps make an educated conclusion about welding quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer, R., Collings, E.W., Welsch, G.: Materials Properties Handbook. Titanium Alloys. ASM International, Cleveland (1994)

    Google Scholar 

  2. Jenney, C.L., O’Brien, A.: Titanium and Titanium Alloys. Welding Handbook. Materials and Application, Part 2, vol. 4. American Welding Society, Miami (1998)

    Google Scholar 

  3. Deters, M., Leyens, C., Kumpfert, J.: Titan und Titanlegierungen. WILEY-WCH, Weinheim (1998)

    Google Scholar 

  4. Cebon, D., Ashby, M.F.: Information systems for material and process selection. Adv. Mater. Proc. 157(6), 44–54 (2000)

    Google Scholar 

  5. Crauman, J.S., Willey, B.: Shedding new light on titanium in CPI construction. In: Proceedings of the Stainless Steel World Conference, vol. 1, pp. 487–494. KCI Publishing BV, The Hague (1999)

    Google Scholar 

  6. Madina, V., Azkarate, S.: Stress corrosion cracking studies of candidate materials for HLW disposal. Proc. Eur. Feder. Corr. 208, 737–742 (1997)

    Google Scholar 

  7. Young, G.A.: Explosion clad works for reactors. Hydraul. Eng. 10(3), 109–110 (2005)

    Google Scholar 

  8. Wronka, B.: Testing of explosive welding and welded joints. Wavy character of the process and joint quality. Int. J. Impact Eng 38(5), 309–313 (2011)

    Article  Google Scholar 

  9. Malletschek, A.: Einfluss von Titan auf den Entwurf von Unterwasserfahrzeugen. Ph.D. thesis, Hamburg, TUHH - Technische Universtat Hamburg (2011)

    Google Scholar 

  10. Caplan, I.L.: Ti-3Al-25 V for seawater piping applications. In: Industrial Applications of Titanium and Zirconium, vol. 1, pp. 43–53. ASTM International (1986)

    Google Scholar 

  11. Guirong, X., Xuesong, G.: Analysis and innovation for penetrant testing for airplane parts. Procedia Eng. 99, 1438–1442 (2015)

    Article  Google Scholar 

  12. Santos, T.G.: A new NDT technique based on bacterial cells to detect micro and nano surface defects. Soldag. Inspeção 20(2), 253–259 (2015)

    Article  Google Scholar 

  13. Santos, T.G., Miranda, R.M.: A new NDT technique based on bacterial cells to detect micro surface defects. NDT E Int. 63, 43–49 (2014)

    Article  Google Scholar 

  14. Alkhimov, Y.V., Gnyusov, S.F.: Investigation of laser welded titanium and stainless steel specimens using digital radiography methods. Russ. J. Nondestr. Test. 48(4), 238–244 (2012)

    Article  Google Scholar 

  15. García-Martín, J.: Nondestructive techniques based on eddy current testing. Sensors 11(3), 2525–2565 (2011)

    Article  Google Scholar 

  16. Weekes, B.: Eddy-current induced thermography - probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy. NDT E Int. 49, 47–56 (2012)

    Article  Google Scholar 

  17. Theodoulidis, T.P., Kriezis, E.E.: Impedance evaluation of rectangular coils for eddy current testing of planar media. NDT E Int. 35(6), 407–414 (2002)

    Article  Google Scholar 

  18. Bonavolonta, C., Valentino, M.: Eddy current technique based on HTc-SQUID and GMR sensors for non-destructive evaluation of fiber/metal laminates. IEEE Trans. Appl. Supercond. 19(3), 808–811 (2009)

    Article  Google Scholar 

  19. Freitas, P.P., Cardoso, S., Ferreira, R.: Optimization and integration of magnetoresistive sensors. Spin 1(1), 71–91 (2011)

    Article  Google Scholar 

  20. He, D.F., Tachiki, M.: Highly sensitive anisotropic magnetoresistance magnetometer for Eddy-current nondestructive evaluation. Rev. Sci. Instrum. 80(3), 1–5 (2009)

    Article  Google Scholar 

  21. Yang, G., Tamburrino, A.: Pulsed eddy current based giant magnetoresistive system for the inspection of aircraft structures. IEEE Trans. Magn. 46(3), 910–917 (2010)

    Article  Google Scholar 

  22. Cardoso, F.A., Rosado, L.: Magnetic tunnel junction based eddy current testing probe for detection of surface defects. J. Appl. Phys. 115(17), 17E516 (2014)

    Article  Google Scholar 

  23. Ishkov, A., Dmitriev, S., Malikov, V., Sagalakov, A.: An alloy flaw measuring system using subminiature eddy-current transducers. In: AIP Conference Proceedings, vol. 1785, pp. 626–629. AIP Publishing Center, Melville (2016)

    Google Scholar 

  24. Dmitriev, S., Malikov, V., Sagalakov, A.: Investigation of steel to dielectric transition using microminiature eddy-current converter. MATEC Web Conf. 143, 1–7 (2018)

    Article  Google Scholar 

  25. Dmitriev, S., Malikov, V., Sagalakov, A.: Eddy current defectoscope for monitoring the duralumin and aluminum-magnesium alloys. IOP Conf. Ser. Mater. Sci. Eng. 189, 1–5 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Malikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitriev, S., Ishkov, A., Malikov, V., Sagalakov, A. (2020). Non-destructive Testing of Quality of Welded Joints of Titanium Plates of Superminiature Eddy-Current Probes. In: Popovic, Z., Manakov, A., Breskich, V. (eds) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Advances in Intelligent Systems and Computing, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-37916-2_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37916-2_96

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37915-5

  • Online ISBN: 978-3-030-37916-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics